Optimization of Finned-Tube Heat Exchanger in a Gravity-Assisted Separated Heat Pipe  

在线阅读下载全文

作  者:Yangyiming Rong Weitao Su Shuai Wang Bowen Du Jianjian Wei Shaozhi Zhang 

机构地区:[1]Huadong Engineering Corporation Limited,Power Construction Corporation of China,Hangzhou,310014,China [2]Institute of Refrigeration and Cryogenics,Zhejiang University,Hangzhou,310027,China

出  处:《Frontiers in Heat and Mass Transfer》2024年第4期1209-1229,共21页热量和质量传递前沿(英文)

基  金:supported by Archaeological Artifact Protection Technology Project of Zhejiang Province(NO2021013).

摘  要:Finned-tube heat exchanger(FTHE)is often used as an evaporator in commercial products of separated heat pipe(SHP).The working conditions of FTHE in gravity-assisted SHP are significantly different from those working in refrigerators and air conditioners.Although FTHE is widely used in commercial products of SHP,previous research on its characteristics is very limited.In this paper,a mathematical model for a SHP with FTHE as the evaporator and plate heat exchanger as the condenser is established and verified with experiments.Parametric analyses are carried out to investigate the influences of evaporator design parameters:air inlet velocity,number of tube rows,tube diameter,and fin pitch.With the increasing of air velocity,number of tube rows and tube diameter,and the decreasing of fin pitch,the heat transfer rate increases,while the energy efficiency ratio(EER)decreases monotonically.Using the total cost of the ten-year life cycle as the performance index,the structure parameters of the evaporator with a given heat transfer rate are optimized by the method of orthogonal experimental design.It is found that the total cost can differ as large as nearly ten times between groups.Among the three factors investigated,the number of tube rows has a significant impact on the total cost of the evaporator.With more tube rows,the total cost will be less.The impacts of fin pitch and tube diameter are insignificant.These results are of practical importance for the engineering design of FTHE in gravity-assisted SHP.

关 键 词:Separated heat pipe finned-tube heat exchanger GRAVITY OPTIMIZATION 

分 类 号:TK172[动力工程及工程热物理—热能工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象