检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xu Zhu Qingyong Chu Xinchang Song Ping Hu Lu Peng
机构地区:[1]School of Management,Wuhan University of Technology,Wuhan,430070,China [2]Research Institute of Digital Governance and Management Decision Innovation,Wuhan University of Technology,Wuhan,430070,China
出 处:《Data Science and Management》2023年第3期123-133,共11页数据科学与管理(英文)
基 金:supported by Fundamental Research Funds for the Central Universities(WUT:2022IVA067).
摘 要:Owing to the convenience of online loans,an increasing number of people are borrowing money on online platforms.With the emergence of machine learning technology,predicting loan defaults has become a popular topic.However,machine learning models have a black-box problem that cannot be disregarded.To make the prediction model rules more understandable and thereby increase the user’s faith in the model,an explanatory model must be used.Logistic regression,decision tree,XGBoost,and LightGBM models are employed to predict a loan default.The prediction results show that LightGBM and XGBoost outperform logistic regression and decision tree models in terms of the predictive ability.The area under curve for LightGBM is 0.7213.The accuracies of LightGBM and XGBoost exceed 0.8.The precisions of LightGBM and XGBoost exceed 0.55.Simultaneously,we employed the local interpretable model-agnostic explanations approach to undertake an explainable analysis of the prediction findings.The results show that factors such as the loan term,loan grade,credit rating,and loan amount affect the predicted outcomes.
关 键 词:Explainable prediction Machine learning Loan default Local interpretable model-agnostic explanations
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.149.27.125