金属表面强反射条件下的光条中心提取方法  

Extraction Method of Laser Stripe Center Line on Metal Workpiece Surface

在线阅读下载全文

作  者:赵兴龙 单彦虎 储成群 程洪涛 赵林熔 Zhao Xinglong;Shan Yanhu;Chu Chengqun;Cheng Hongtao;Zhao Linrong

机构地区:[1]中北大学仪器与电子学院,太原市030051

出  处:《工具技术》2024年第11期139-144,共6页Tool Engineering

基  金:国家自然科学基金重点项目(62131018);山西省基础研究计划资助项目(202103021222012)。

摘  要:针对强反射面光条纹图像中散斑和合成散斑等噪声严重的问题,提出一种鲁棒性强的激光条纹中心提取方法。利用图像增强算法强化散斑噪声的颗粒状形态,从而增强有效光条。基于窗口滑块以光栅扫描方式遍历所有像素点,收集局部图像特征,确定初始中心点和包含有效光条的感兴趣区域,并根据光条形态学特征分割提取实现激光条纹。根据以初始中心点为几何中心的二阶矩计算光条纹法向,并在其法向上利用灰度重心法确定中心点的亚像素位置。实验结果表明,该方法能有效抑制散斑噪声的干扰,具有较强的鲁棒性,点云三维重建误差小于0.03mm,保证了系统的测量精度。A robust laser stripe centre extraction method is proposed to address the problem of severe noise such as scatter and synthetic scatter in strongly reflective surface light stripe images.The method first uses an image enhancement algorithm to enhance the granular shape of the scatter noise and to enhance the effective light stripes.A window slider is used to traverse all pixel points in a raster scan to collect local image features,the initial center point and the region of interest containing effective light stripes based on this is determined,and the laser stripe segmentation is extracted based on the morphological features of the light bar.Finally,the normal direction of the light stripe is calculated by using the second moment with the initial center point as the geometric center,and the sub-pixel position of the center point is determined by the gray-scale center of gravity method in the normal direction.The experimental results show that the method can effectively suppress the interference of scattering noise,has strong robustness,and the error of 3D reconstruction of the point cloud is less than 0.03mm,which ensures the measurement accuracy of the system.

关 键 词:中心提取 二阶矩 重心法 金属表面 三维测量 

分 类 号:TG84[金属学及工艺—公差测量技术] TH124[机械工程—机械设计及理论] TN249[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象