Almost global smooth solutions of the 3D quasilinear Klein-Gordon equations on the product space R^(2)×T  

在线阅读下载全文

作  者:Jun Li Fei Tao Huicheng Yin 

机构地区:[1]Department of Mathematics,Nanjing University,Nanjing 210093,China [2]School of Mathematical Sciences and Mathematical Institute,Nanjing Normal University,Nanjing 210023,China

出  处:《Science China Mathematics》2024年第12期2713-2752,共40页中国科学(数学英文版)

基  金:supported by National Natural Science Foundation of China(Grant No.11871030);supported by National Natural Science Foundation of China(Grant No.11731007)。

摘  要:In this paper,for the 3D quadratic nonlinear Klein-Gordon equation on the product space R^(2)×T,we focus on the lower bound of the lifespan of the smooth solution with slowly decaying initial data.When the size of initial data is bounded by ε_(0)>0,it is shown that a smooth solution exists up to the time C_(0)/20 with0 being sufficiently small and e^(c0)/ε_(0)^(2)>0 being some suitable constant.Note that the solution of the corresponding 3D linear homogeneous Klein-Gordon equation on R^(2)×T only admits the optimal time-decay rate(1+t)−1,from which we generally derive the lifespan of the nonlinear Klein-Gordon equation up to e^(c0/ε0)rather than the more precise e^(c0/ε^(2)0) here.

关 键 词:quasilinear Klein-Gordon equation almost global solution Z-norm Littlewood-Paley decomposition space-time resonance method energy estimate 

分 类 号:O175.29[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象