检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Gang Li
机构地区:[1]School of Mathematics,Shandong University,Jinan,250100,China
出 处:《Science China Mathematics》2024年第12期2789-2822,共34页中国科学(数学英文版)
基 金:supported by National Natural Science Foundation of China(Grant No.11701326);the Fundamental Research Funds of Shandong University(Grant No.2016HW008);the Young Scholars Program of Shandong University(Grant No.2018WLJH85)。
摘 要:In this paper,we show that for an Sp(k+1)-invariant metric g on S^(4k+3)(k 1)close to the round metric,the conformally compact Einstein(CCE)manifold(M,g)with(S^(4k+3),[?])as its conformal infinity is unique up to isometry.Moreover,by the result in Li et al.(2017),g is the Graham-Lee metric(see Graham and Lee(1991))on the unit ball B_(1)■R^(4k+4).We also give an a priori estimate of the Einstein metric g.As a byproduct of the a priori estimates,based on the estimate and Graham-Lee and Lee's seminal perturbation results(see Graham and Lee(1991)and Lee(2006)),we directly use the continuity method to obtain an existence result of the non-positively curved CCE metric with prescribed conformal infinity(S^(4k+3),[g])when the metric?is Sp(k+1)-invariant.We also generalize the results to the case of conformal infinity(S^(15),[?])with g a Spin(9)-invariant metric in the appendix.
关 键 词:conformally compact Einstein manifolds prescribed conformal infinity uniqueness and existence of CCE filling-in two-point boundary value problem of nonlinear ODE systems volume comparison total variation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.207.192