检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Bin MU Xin WANG Shijin YUAN Yuxuan CHEN Guansong WANG Bo QIN Guanbo ZHOU
机构地区:[1]School of Software Engineering,Tongji University,Shanghai 201804,China [2]Department of Atmospheric and Oceanic Sciences&Institute of Atmospheric Sciences,Fudan University,Shanghai 200438,China [3]National Meteorological Center,Beijing 100081,China [4]Shanghai Typhoon Institute,China Meteorological Administration,Shanghai 200030,China
出 处:《Science China Earth Sciences》2024年第12期3671-3695,共25页中国科学(地球科学英文版)
基 金:supported by the National Natural Science Foundation of China(Grant Nos.U2142211,42075141&42341202);the National Key Research and Development Program of China(Grant No.2020YFA0608000);the Shanghai Municipal Science and Technology Major Project(Grant No.2021SHZDZX0100);the Fundamental Research Funds for the Central Universities。
摘 要:Tropical cloud clusters(TCCs)can potentially develop into tropical cyclones(TCs),leading to significant casualties and economic losses.Accurate prediction of tropical cyclogenesis(TCG)is crucial for early warnings.Most traditional deep learning methods applied to TCG prediction rely on predictors from a single time point,neglect the ocean-atmosphere interactions,and exhibit low model interpretability.This study proposes the Tropical Cyclogenesis Prediction-Net(TCGP-Net)based on the Swin Transformer,which leverages convolutional operations and attention mechanisms to encode spatiotemporal features and capture the temporal evolution of predictors.This model incorporates the coupled ocean-atmosphere interactions,including multiple variables such as sea surface temperature.Additionally,causal inference and integrated gradients are employed to validate the effectiveness of the predictors and provide an interpretability analysis of the model's decision-making process.The model is trained using GridSat satellite data and ERA5 reanalysis datasets.Experimental results demonstrate that TCGP-Net achieves high accuracy and stability,with a detection rate of 97.9%and a false alarm rate of 2.2%for predicting TCG 24 hours in advance,significantly outperforming existing models.This indicates that TCGP-Net is a reliable tool for tropical cyclogenesis prediction.
关 键 词:Tropical cyclogenesis prediction Deep learning Feature fusion INTERPRETABILITY Causal inference
分 类 号:P457.8[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.111.63