检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xin HUANG Zhongrui ZHAO Yufeng ZHONG Long XU Marianna B.KORSÓS R.ERDÉLYI
机构地区:[1]Faculty of Electrical Engineering and Computer Science,Ningbo University,Ningbo 315211,China [2]State Key Laboratory of Space Weather,National Space Science Center,Chinese Academy of Sciences,Beijing 100190,China [3]School of Astronomy and Space Science,University of Chinese Academy of Sciences,Beijing 100049,China [4]Beijing Cellular Exploration Science and Technology Center,Beijing 100190,China [5]Dipartimento di Fisica e Astronomia“Ettore Majorana”,Universitàdi Catania,Catania I 95123,Italy [6]Department of Astronomy,Eötvös Loránd University,Budapest H-1112,Hungary [7]Hungarian Solar Physics Foundation,Gyula H-5700,Hungary [8]Solar Physics&Space Plasma Research Center(SP2RC),School of Mathematics and Statistics,University of Sheffield,Sheffield S37RH,UK
出 处:《Science China Earth Sciences》2024年第12期3727-3764,共38页中国科学(地球科学英文版)
基 金:Science and Technology Facilities Council(STFC,Grant No.ST/M000826/1);National Research Development and Innovation Office(OTKA,Grant No.K142987)Hungary for enabling this research;ST/S000518/1,PIA.CE.RI.2020-2022 Linea 2,CESAR 2020-35-HH.0,and UNKP-224-II-ELTE-186 grants;the support from ISSI-Beijing for their project“Step forward in solar flare and coronal mass ejection(CME)forecasting”;supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0560000);the National Key R&D Program of China(Grant No.2021YFA1600504);the National Natural Science Foundation of China(Grant No.11873060)。
摘 要:Solar eruptive activities,mainly including solar flares,coronal mass ejections(CME),and solar proton events(SPE),have an important impact on space weather and our technosphere.The short-term solar eruptive activity prediction is an active field of research in the space weather prediction.Numerical,statistical,and machine learning methods are proposed to build prediction models of the solar eruptive activities.With the development of space-based and ground-based facilities,a large amount of observational data of the Sun is accumulated,and data-driven prediction models of solar eruptive activities have made a significant progress.In this review,we briefly introduce the machine learning algorithms applied in solar eruptive activity prediction,summarize the prediction modeling process,overview the progress made in the field of solar eruptive activity prediction model,and look forward to the possible directions in the future.
关 键 词:Solar flare Coronal mass ejection Solar proton event Machine learning Prediction model
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49