检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡海涛 王晓荣[1] HU Haitao;WANG Xiaorong(Department of Abdominal Ultrasound Diagnosis,The First Affiliated Hospital of Xinjiang Medical University,Urumqi,Xinjiang 830054,China)
机构地区:[1]新疆医科大学第一附属医院腹部超声诊断科,新疆乌鲁木齐830054
出 处:《影像研究与医学应用》2024年第23期10-12,共3页Journal of Imaging Research and Medical Applications
摘 要:淋巴结肿大是多种疾病的共有表现,评判淋巴结的良、恶性,对于疾病的诊断与治疗有重要意义。超声是目前淋巴结疾病的首选影像学检查方法,但对声像图不典型的淋巴结鉴别,仍然存在困难。伴随人工智能的迅猛发展,深度学习和影像组学方法能提供更多肉眼无法捕捉的信息,目前已应用于淋巴结超声医学研究。Lymphadenectasis is a common manifestation of various diseases.Evaluating the benign or malignant nature of lymph nodes is of great significance for the diagnosis and treatment of diseases.Ultrasound is currently the preferred imaging method for lymph node diseases,but there are still difficulties in distinguishing lymph nodes with atypical ultrasound images.With the rapid development of artificial intelligence,deep learning and radiomics methods can provide more information that cannot be captured by the naked eye,and have been applied in lymph node ultrasound medical research.
分 类 号:R445.1[医药卫生—影像医学与核医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7