面向虚拟编组的多列车协同制动控制算法  

Brake control algorithm for virtually coupled trains based on multi vehicle cooperation

在线阅读下载全文

作  者:张蕾 李子牧 鄢永耀 豆飞[3] 刘宏杰[1] ZHANG Lei;LIZi-mu;YAN Yong-yao;DOU Fei;LIU Hong-jie(School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100044,China;Traffic Control Technology Co.,Ltd.,Beijing 100070,China;Beijing Mass Transit Railway Operation Co.,Ltd.,Beijing 100044,China)

机构地区:[1]北京交通大学电子信息工程学院,北京100044 [2]交控科技股份有限公司,北京100070 [3]北京市地铁运营有限公司,北京100044

出  处:《吉林大学学报(工学版)》2024年第10期3027-3036,共10页Journal of Jilin University:Engineering and Technology Edition

基  金:国家重点研发计划项目(2020YFB1600702)。

摘  要:针对列车虚拟编组运行过程中,紧急停车时各列车单元通常采用统一的制动减速度,受实际工况影响在易发生因间距控制不均匀增大行车安全风险的问题,本文开展了基于多车协同的制动控制算法设计及优化分析。首先,分析了虚拟编组列车单元的紧急停车场景,并定义了总风险系数以评价安全风险;然后,以总风险系数最小为目标,设计了制动率计算方法。仿真结果显示,该算法具备更低的总风险系数和更少的碰撞次数,证明了其正确性和有效性。A unified deceleration is usually adopted among all train units when an emergency occurs during the operation of a virtually-coupled train.Affected by the actual operation conditions,safety risk is likely to be increased under the control of uneven spacing between train units.To solve this problem,this paper designs a multi-vehicle cooperation-based brake control algorithm.Firstly,the emergency braking scenario of a virtually coupled train is analyzed,and total risk coefficient is defined to evaluate the safety risk.Then,with the goal of minimizing the total risk coefficient,a specific algorithm is designed to calculate the train braking rate of each unit according to the actual working conditions of the virtually-coupled train.Finally,simulation results show that the algorithm has lower total risk coefficient and fewer collision counts,which proves the correctness and effectiveness of the proposed multi-vehicle cooperation-based brake control algorithm.

关 键 词:交通信息工程及控制 轨道交通 虚拟编组 多车协同 制动控制 

分 类 号:U284[交通运输工程—交通信息工程及控制]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象