检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Rossi Passarella Siti Nurmaini Muhammad Naufal Rachmatullah Harumi Veny Fara Nissya Nur Hafidzoh
机构地区:[1]Department of Computer Engineering,Faculty of Computer Science,Universitas Sriwijaya,30662,Indonesia [2]Intelligent System Research Group(ISysRG),Faculty of Computer Science,Universitas Sriwijaya,30662,Indonesia [3]Department of Informatics,Faculty of Computer Science,Universitas Sriwijaya,30662,Indonesia [4]College of Engineering Studies,Universiti Teknologi MARA(UiTM),Shah Alam,40450,Malaysia
出 处:《Data Science and Management》2024年第3期256-265,共10页数据科学与管理(英文)
摘 要:Airplanes are a social necessity for movement of humans,goods,and other.They are generally safe modes of transportation;however,incidents and accidents occasionally occur.To prevent aviation accidents,it is necessary to develop a machine-learning model to detect and predict commercial flights using automatic dependent surveillance–broadcast data.This study combined data-quality detection,anomaly detection,and abnormality-classification-model development.The research methodology involved the following stages:problem statement,data selection and labeling,prediction-model development,deployment,and testing.The data labeling process was based on the rules framed by the international civil aviation organization for commercial,jet-engine flights and validated by expert commercial pilots.The results showed that the best prediction model,the quadratic-discriminant-analysis,was 93%accurate,indicating a“good fit”.Moreover,the model’s area-under-the-curve results for abnormal and normal detection were 0.97 and 0.96,respectively,thus confirming its“good fit”.
关 键 词:Automatic dependent surveillance-broadcast data Commercial airplanes accident Data-labeling Machine learning Prediction model
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.12.147.188