检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Songming Zheng Tao Chen Yujie Fang Chang He Huamei Duan Shan Ren Chunbao Charles Xu
机构地区:[1]College of Materials Science and Engineering,Chongqing University,Chongqing,400044,China [2]Department of Environmental Science and Engineering,School of Energy and Power Engineering,Xi’an Jiaotong University,Xi’an,710049,China [3]School of Energy and Environment,City University of Hong Kong,Hong Kong SAR,China
出 处:《Resources Chemicals and Materials》2024年第3期188-229,共42页资源化工与材料(英文)
摘 要:Recently,lithium-ion batteries(LIBs),due to their superior performance,have been vastly applied in electronic,auto,and other industries,resulting in the generation of an increasing amount of spent LIBs.What’s worse,LIBs contained potentially toxic substances,including heavy metals,toxic and flammable electrolyte containing LiBF_(4),LiClO_(4),and LiPF_(6).Conventional disposal of spent LIBs via landfill or incineration exerts tremendous pressure on the environment.It was necessary to adopt efficient,low-cost,and environmentally friendly approaches to valorizing spent LIBs,which could not only alleviate the shortage of rare resources by recycling valuable ele-ments such as Cu,Li,Mn,Ni,Co,and Al,but also eliminate the pollution of harmful components in batteries and realize the recycling and sustainable industry related to consumer electronics and electric vehicles(EVs).Given this,this paper summarized the recycling technologies of spent LIBs,including pyrometallurgy(melting reduction and roasting methods)and hydrometallurgy(leaching,precipitation,extraction,ion-exchange,elec-trochemical,sol-gel methods),and electrolyte recycling(organic solvent extraction and supercritical extraction methods).Pyrometallurgy technologies had relatively decent metal recovery rates but were associated with high energy consumption and atmospheric emission issues.Hydrometallurgical technologies were more environ-mentally friendly and efficient in recovering spent LIBs,although disposing of the wastewater generated from the process remained a challenge.In addition,the different industrial processes and various countries’related policies of recycling spent LIBs were investigated.In the end,the outlooks and future directions of recycling spent LIBs were proposed.
关 键 词:Spent lithium-ion batteries RECOVERY Recycling technologies Materials POLICIES
分 类 号:TM9[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31