A convolutional recurrent neural network for strong convective rainfall nowcasting using weather radar data in Southeastern Brazil  

在线阅读下载全文

作  者:Angelica N.Caseri Leonardo Bacelar Lima Santos Stephan Stephany 

机构地区:[1]CEMADEN-Estrada Dr.Altino Bondensan,500-Eug^enio de Melo,S.J.Campos,Brazil [2]INPE-Av.dos Astronautas,1758-Jardim da Granja,S.J.Campos,12.227-001,Brazil

出  处:《Artificial Intelligence in Geosciences》2022年第1期8-13,共6页地学人工智能(英文)

摘  要:Strong convective systems and the associated heavy rainfall events can trig-ger floods and landslides with severe detrimental consequences.These events have a high spatio-temporal variability,being difficult to predict by standard meteorological numerical models.This work proposes the M5Images method for performing the very short-term prediction(nowcasting)of heavy convective rainfall using weather radar data by means of a convolutional recurrent neural network.The recurrent part of it is a Long Short-Term Memory(LSTM)neural network.Prediction tests were performed for the city and surroundings of Campinas,located in the Southeastern Brazil.The convolutional recurrent neural network was trained using time series of rainfall rate images derived from weather radar data for a selected set of heavy rainfall events.The attained pre-diction performance was better than that given by the persistence forecasting method for different prediction times.

关 键 词:NOWCASTING RAINFALL Extreme events Weather radar Deep learning 

分 类 号:TN9[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象