A machine learning approach to formation of earthquake categories using hierarchies of magnitude and consequence to guide emergency management  

在线阅读下载全文

作  者:Donald Douglas Atsa’am Terlumun Gbaden Ruth Wario 

机构地区:[1]Department of Computer Science and Informatics,Faculty of Natural and Agricultural Sciences,University of the Free State,Phuthaditjhaba,9866,South Africa [2]Department of Computer Science,College of Physical Sciences,Joseph Sarwuan Tarka University,Makurdi,97001,Nigeria

出  处:《Data Science and Management》2023年第4期208-213,共6页数据科学与管理(英文)

摘  要:This study deployed k-means clustering to formulate earthquake categories based on magnitude and consequence,using global earthquake data spanning from 1900 to 2021.Based on patterns within the historical data,numeric boundaries were extracted to categorize the magnitude,deaths,injuries,and damage caused by earthquakes into low,medium,and high classes.Following a future earthquake incident,the classification scheme can be utilized to assign earthquakes into appropriate categories by inputting the magnitude,number of fatalities and injuries,and monetary estimates of total damage.The resulting taxonomy provides a means of classifying future earthquake incidents,thereby guiding the allocation and deployment of disaster management resources in proportion to the specific characteristics of each incident.Furthermore,the scheme can serve as a reference tool for auditing the utilization of earthquake management resources.

关 键 词:Earthquake categories Magnitude and consequence Earthquake classification Resource allocation K-means clustering 

分 类 号:P31[天文地球—固体地球物理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象