Using machine learning to identify primary features in choosing electric vehicles based on income levels  

在线阅读下载全文

作  者:Mingjun Ma Eugene Pinsky 

机构地区:[1]Department of Computer Science,Boston University Metropolitan College,Boston,02215,USA

出  处:《Data Science and Management》2024年第1期1-6,共6页数据科学与管理(英文)

摘  要:An electric vehicle is becoming one of the popular choices when choosing a vehicle.People are generally impressed with electric vehicles’zero-emission and smooth drives,while unstable battery duration keeps people away.This study tries to identify the primary factors that affect the likelihood of owning an electric vehicle based on different income levels.We divide the dataset into three subgroups by household income from$50,000 to$150,000 or low-medium income level,$150,000 to$250,000 or medium-high income level,and$250,000 or above,the high-income level.We considered several machine learning classifiers,and naive Bayes gave us a relatively higher accuracy than other algorithms in terms of overall accuracy and F1 scores.Based on the probability analysis,we found that for each of these groups,one-way commuting distance is the most important for all three income levels.

关 键 词:Unbabalced data Electric vehicle Machine learning Sampling with replacement Supervised learning Naive Bayes 

分 类 号:F12[经济管理—世界经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象