Hybrid CBAM-EfficientNetV2 Fire Image Recognition Method with Label Smoothing in Detecting Tiny Targets  

在线阅读下载全文

作  者:Bo Wang Guozhong Huang Haoxuan Li Xiaolong Chen Lei Zhang Xuehong Gao 

机构地区:[1]Research Institute of Macro-Safety Science,University of Science and Technology Beijing,Beijing,100083,China [2]School of Civil and Resource Engineering,University of Science and Technology Beijing,Beijing,100083,China [3]Huawei Technology Co.,Ltd.,Shenzhen,518129,China

出  处:《Machine Intelligence Research》2024年第6期1145-1161,共17页机器智能研究(英文版)

基  金:National Key Research and Development Program of China(No.2021YFC1523502-03);Fundamental Research Funds for the Central Universities,China(No.FRF-IDRY-21-016).

摘  要:Image fire recognition is of great significance in fire prevention and loss reduction through early fire detection and warning.Aiming at the problems of low accuracy of existing fire recognition and high error rate of tiny target detection,this study proposed a fire recognition model based on a channel space attention mechanism.First,the convolutional block attention module(CBAM)is intro-duced into the first and last convolutional layers EfficientNetV2,which shows strong feature extraction ability and high computational efficiency as the backbone network.In terms of channel and space aspects,the weights in the feature layer are increased,which enhances the semantic information of flame smoke features and makes the model pay more attention to the feature information of fire images.Then,label smoothing based on the cross-entropy loss function is introduced into this study to avoid predicting labels too confidently in the training process to improve the generalization ability of the recognition model.The experimental results show that the fire image re-cognition accuracy based on the CBAM-EfficientNetV2 model reaches 98.9%.The accuracy of smoke image recognition can reach 98.5%.The accuracy of small target detection can reach 96.1%.At the same time,we compared the existing methods and found that the proposed method achieved higher accuracy,precision,recall,and F1-score.Finally,the fire image results are visualized using the Grad-CAM technique,which makes the model more effective and more intuitive in detecting tiny targets.

关 键 词:Fire recognition tiny target detection efficientNetV2 label smoothing convolutional block attention module(CBAM) 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TP391.41[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象