检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Haiying Fu Shuai Wang Guicheng He Zhonghua Zhu Qing Yu Dexin Ding
机构地区:[1]Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy,University of South China,Hengyang,421001,PR China [2]School of Resource Environment and Safety Engineering,University of South China,Hengyang,421001,PR China
出 处:《Artificial Intelligence in Geosciences》2024年第1期310-319,共10页地学人工智能(英文)
基 金:supported by the National Natural Science Foundation of China (12105139 and 42277264);National Key Research and Development Program of China (2021YFC2902104);Education Department of Hunan Province (21B0446).
摘 要:Porosity,tortuosity,specific surface area(SSA),and permeability are four key parameters of reactive transport modeling in sandstone,which are important for understanding solute transport and geochemical reaction pro-cesses in sandstone aquifers.These four parameters reflect the characteristics of pore structure of sandstone from different perspectives,and the traditional empirical formulas cannot make accurate predictions of them due to their complexity and heterogeneity.In this paper,eleven types of sandstone CT images were firstly segmented into numerous subsample images,the porosity,tortuosity,SSA,and permeability of the subsamples were calculated,and the dataset was established.The 3D convolutional neural network(CNN)models were subse-quently established and trained to predict the key reactive transport parameters based on subsample CT images of sandstones.The results demonstrated that the 3D CNN model with multiple outputs exhibited excellent prediction ability for the four parameters compared to the traditional empirical formulas.In particular,for the prediction of tortuosity and permeability,the 3D CNN model with multiple outputs even showed slightly better prediction ability than its single-output variant model.Additionally,it demonstrated good generalization per-formance on sandstone CT images not included in the training dataset.The study showed that the 3D CNN model with multiple outputs has the advantages of simplifying operation and saving computational resources,which has the prospect of popularization and application.
关 键 词:Reactive transport CNN model with multiple outputs SANDSTONE TORTUOSITY PERMEABILITY
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117