检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于小四 韦宝泉 李泽文 邓芳明 YU Xiaosi;WEI Baoquan;LI Zewen;DENG Fangming(China Railway Seventh Bureau Group Co.,Ltd.,450007,Zhengzhou,China;School of Electrical and Automation Engineering,East China Jiaotong University,330013,Nanchang,China)
机构地区:[1]中铁七局集团有限公司,郑州450007 [2]华东交通大学电气与自动化工程学院,南昌330013
出 处:《城市轨道交通研究》2024年第12期93-96,102,共5页Urban Mass Transit
基 金:国家自然科学基金项目(52167008,52377103);江西省自然科学基金项目(20232BAB204064,20242BAB25284);江西省教育厅科技项目(GJJ2200616)。
摘 要:[目的]针对少样本条件下轨道交通接触网小体积零部件检测困难问题,提出一种融合生成对抗网络和深度分割模型的缺陷检测方法。[方法]介绍了检测系统;介绍了改进的DCGAN(深度卷积生成对抗网络)结构和改进的YOLACT(单阶段条件对抗性网络)模型,并基于实际缺陷数据集验证缺陷检测效果。[结果及结论]在样本扩充部分,改进的DCGAN模型能够通过引入若干量纲一化操作,增加高效通道注意力机制,提高生成样本的质量。在模型检测部分,采用改进的ResNeXt-FPN(残差网络与特征金字塔结合的深度卷积神经网络)结构代替原始YOLACT模型的主干网络,以充分表征目标多尺度特征。在掩码分支网络中引入CS(通道和空间)注意力机制,能够有效提高小体积零部件的检测精度。所提缺陷检测模型能够在复杂接触网图像中实现开口销钉的高精度检测,其检测精度和召回率分别高达88.63%和87.49%。相比于原始YOLACT模型,所提缺陷检测模型的综合性能提升约6.2%。[Objective]Aiming at the difficulties of detecting small-volume parts of rail transit catenary under few-sample conditions,a defect detection method integrating generative adversarial networks and deep segmentation models is proposed.[Method]The composition of the detection system,the improved DCGAN(deep convolutional generative adversarial network)structure and the improved YOLACT(single-stage conditional adversarial network)model are introduced,and the defect detection effect is verified based on the actual defect datasets.[Result&Conclusion]In the sample expansion part,the improved DCGAN model can improve the quality of generated samples by introducing several normalization operations and adding an efficient channel attention mechanism.In the model detection part,the improved ResNeXt-FPN(deep con-volutional neural network combining residual network and feature pyramid network)structure is used to replace the backbone network of the original YOLACT model,aiming to fully characterize the multi-scale features of the target.The introduction of CS(channel and space)attention mechanism in the mask branch network can effectively improve the detection accuracy of small-volume parts.The proposed defect detection model can achieve high-precision detection of cotter pins in complex contact network images,with a detection accuracy and recall rate of up to 88.63%and 87.49%respectively.Compared with the original YOLACT model,the comprehensive performance of the proposed defect detection model is improved by about 6.2%.
分 类 号:U225.4[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49