网络舆情视角下突发公共卫生事件情景推演  

Scenarios of public health emergencies from the perspective of network public opinion

在线阅读下载全文

作  者:方丹辉[1,2] 徐小云 FANG Danhui;XU Xiaoyun(School of Safety Science and Emergency Management,Wuhan University of Technology,Wuhan Hubei 430070,China)

机构地区:[1]武汉理工大学安全科学与应急管理学院,湖北武汉430070 [2]武汉理工大学中国应急管理研究中心,湖北武汉430070

出  处:《工业安全与环保》2024年第12期57-62,共6页Industrial Safety and Environmental Protection

基  金:国家社会科学基金重大项目(21&ZD127)。

摘  要:为了提高突发公共卫生事件应急处置水平,从网络舆情角度出发,采用知识元模型和动态贝叶斯(BN)相结合的方法,研究突发公共卫生事件的情景演化过程。通过分析突发公共卫生事件,选取突发事件、外部环境、驱动因素、应急活动为关键要素,分析各要素之间的作用关系,构建网络舆情视角下突发公共卫生事件动态贝叶斯模型,将该模型运用到2019年底武汉市新冠肺炎疫情事件中,通过Netica软件计算各节点的状态概率,从而推演发展趋势。结果表明:推演结果与实际发展过程及状态基本一致,在舆情产生、发展、高潮阶段“开展病因学调查”“通报疫情信息”“对相关事件进行辟谣,处理”发生概率较低,应该加大实施力度,提高突发公共卫生应急处置水平。In order to improve the level of public health emergency response,from the perspective of network public opinion,knowledge meta-model and dynamic Bayes(BN)were used to study the scenario evolution process of public health emergencies.By analyzing public health emergencies,selecting emergencies,external environment,driving factors and emergency activities as key elements,and analyzing the relationship between the various elements,the dynamic Bayesian model of public health emergencies from the perspective of network public opinion was constructed,and the model was applied to the novel coronavirus pneumonia outbreak in Wuhan at the end of 2019.The state probability of each node is calculated by Netica software to deduce the development trend.The results showed that the inferred results were basically consistent with the actual development process and state.In the generation,development and climax stages of public opinion,the probability of"carrying out etiological investigation","reporting epidemic information","refuting rumors of related events and handling"was low,and the implementation should be strengthened to improve the level of public health emergency response.

关 键 词:突发公共卫生事件 网络舆情 情景推演 知识元 贝叶斯网络(BN) 

分 类 号:R197[医药卫生—卫生事业管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象