检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Shamla Rasheed Marykutty Abraham
机构地区:[1]Sathyabama Institute of Science and Technology,Chennai-600119,Tamil Nadu,India
出 处:《Journal of Groundwater Science and Engineering》2024年第4期428-452,共25页地下水科学与工程(英文版)
摘 要:Groundwater recharge is a critical hydrologic component that determines groundwater availability and sustainability.Groundwater recharge estimation can be performed in a variety of ways,ranging from direct procedures to simulation models.The optimal strategy for recharge estimation depends on several factors,such as study objectives,climatic zones,hydrogeological conditions,data availability,methodology,and temporal and spatial constraints.Groundwater recharge is influenced by uncertainties in weather and hydrology.This study discusses conventional recharge estimation techniques and their application for optimal recharge calculation,and it also offers an overview of recent advances in recharge estimation methods.Most methods provide direct or indirect estimation of recharge across a small region on a point scale for a shorter time.With recent technological advancements and increased data availability,several advanced computational tools,including numerical,empirical,and artificial intelligence models,have been developed for efficient and reliable computation of groundwater recharge.This review article provides a thorough discussion of the techniques,assumptions,advantages,limitations,and selection procedures for estimating groundwater recharge.
关 键 词:Groundwater recharge Groundwater balance Groundwater flow Machine learning Deep learning
分 类 号:P641[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7