检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:雷亮 钟何平[1] LEI Liang;ZHONG Heping(School of Electronic Engineering,Naval University of Engineering,Wuhan 430033)
出 处:《舰船电子工程》2024年第10期37-42,共6页Ship Electronic Engineering
摘 要:为了解决合成孔径声呐图像远近灰度不均衡,对比度低,图像判别困难等问题,提出了一种基于图像的局部邻域和距离向相结合的自适应背景估计的均衡方法。首先提出了基于照度模型的均衡模型,然后通过非均衡时间演化模型和构造均衡函数计算图像的差分来估计背景分量,并在迭代过程中通过残余能量大小自动优化参数和判断迭代终止,最后通过照度模型得到均衡结果。通过实际数据验证和分析,发现经过均衡处理后的声呐图像,其背景更加真实,对比度提高,目标和纹理得到增强,同时,噪声和其他干扰信号也得到了有效的抑制。算法在图像的局部均衡性、信息量大小、细节丰富度、进一步验证了该算法的实用性和有效性。To solve the problems of non-uniform grayscale,low contrast,and difficult discrimination of synthetic aperture sonar(SAS)images,a method for equalization based on combined with local neighborhood and distance direction of image to adaptive background estimation is proposed.First,an equalization model based on the illumination model is proposed.Then,the non-uniform time evolution model and equalization function is used to estimate the background component of the image through the differential calculation.In the iteration process,the parameters are automatically optimized and judged to terminate according to the residual energy size.Finally,the equalization result is obtained through the illumination model and brightness parameter.Through actual data verification and analysis,it is found that the background in the SAS image becomes more even,the contrast is improved,and the targets and textures are enhanced,while noise and other interference signals are effectively suppressed after equalization.The algorithm performs excellently in terms of local equalization,information capacity,detail richness,peak signal-to-noise ratio,and structural similarity,which further verifies the practicality and effectiveness of the algorithm.
分 类 号:TN958[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.12.163.164