检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李强[1] 应云斌 仇旻 Li Qiang;Ying Yunbin;Qiu Min(State Key Laboratory of Extreme Photonics and Instrumentation,College of Optical Science and Engineering,Zhejiang University,Hangzhou 310027,Zhejiang,China;School of Engineering,Westlake University,Hangzhou 310024,Zhejiang,China)
机构地区:[1]浙江大学光电科学与工程学院极端光学技术与仪器全国重点实验室,浙江杭州310027 [2]西湖大学工学院,浙江杭州310024
出 处:《光学学报》2024年第19期21-32,F0002,共13页Acta Optica Sinica
基 金:国家自然科学基金(U2341225,62375242)。
摘 要:自然界物体产生的热辐射通常是波长连续、非偏振和全方向的。将热辐射限制在特定的波长范围和特定方向内的能力对于提高器件的能量利用效率具有重要意义。随着纳米技术的快速发展,热辐射方向调控器件正逐渐朝着微纳热辐射器的方向发展。介绍了纳米光子结构实现热辐射方向调控的主要研究方法,列举了热辐射方向调控的主要应用,并总结了目前热辐射方向调控研究仍存在的问题,最后对热辐射方向调控及其应用的未来发展进行了展望。Significance Thermal emission,an omnipresent fundamental physical phenomenon in nature,is triggered by the thermalinduced motion of particles and quasi-particles within an object.Any object with a temperature above absolute zero(−273℃)emits thermal emission energy in the form of electromagnetic waves to the surrounding environment.Due to the random nature of the thermal motion of charged particles,the thermal radiation produced by objects in nature typically features continuous wavelength,non-polarization,and omnidirectional incoherent light.Moreover,the relationship between radiation intensity and wavelength follows Planck’s blackbody radiation law.However,in practical applications,these thermal emitters often radiate a significant amount of thermal radiation in unnecessary directions,resulting in substantial energy waste.Therefore,it is crucial to concentrate the energy generated by thermal emission from an object into a specific range of direction,so as to achieve efficient control of thermal emission direction.The ability to confine thermal emission within specific wavelength ranges and directions is of significance for improving the energy utilization efficiency of devices.With the rapid development of nanotechnology,the control of thermal emission is evolving towards micro-scale and even nano-scale devices.Micro-nano thermal emitters utilize nanophotonic structures,where at least one structure features wavelength or sub-wavelength scales,to manipulate the polarization,wavelength,phase,and amplitude of light at sub-wavelength scales.This can break the limitations of conventional thermal emitters that exhibit continuous wavelength,non-polarization,and omnidirectional in thermal emission.As a result,control over thermal emission can be achieved in terms of spectral,directional,and polarization control(Fig.1).Compared to traditional thermal emission devices,adopting nanophotonic structures in the design of thermal emission devices enables higher degrees of freedom in controlling thermal emission.Additiona
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.27.128