检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:沈贤蒙 邵仁锦 马锁冬 浦东林[1,3] 王钦华 王俊学 贲玥 薛楚风 Shen Xianmeng;Shao Renjin;Ma Suodong;Pu Donglin;Wang Chinhua;Wang Junxue;Ben Yue;Xue Chufeng(School of Optoelectronic Science and Engineering,Soochow University,Suzhou 215006,Jiangsu,China;Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province&Key Lab of Modern Optical Technologies of Education Ministry of China,Suzhou 215006,Jiangsu,China;SVG Tech Group Co.,Ltd.,Suzhou 215026,Jiangsu,China)
机构地区:[1]苏州大学光电科学与工程学院,江苏苏州215006 [2]江苏省先进光学制造技术重点实验室&教育部现代光学技术重点实验室,江苏苏州215006 [3]苏州苏大维格科技集团股份有限公司,江苏苏州215026
出 处:《光学学报》2024年第19期168-182,共15页Acta Optica Sinica
基 金:江苏省研究生科研与实践创新计划(SJCX23_1661);苏州大学2023年大学生创新创业训练计划项目(2023xj015);苏州大学光电科学与工程学院“SEA”计划(第一期项目);江苏高校优势学科建设工程资助项目(PAPD)。
摘 要:目前快照式衍射光谱成像技术对成像过程中的误差考虑尚不够充分,导致成像效果受限。为了解决上述问题,对衍射成像过程中衍射透镜的加工误差(面形误差、图形结构位置误差)、元器件装配误差、系统和环境噪声等因素进行分析,提出了一种混合误差分析与抑制方法。基于上述误差项构建衍射退化模型,并采用深度展开网络对衍射模糊图像进行重构,通过将退化模型和重构网络进行联合训练,显著增强了重构算法对误差和噪声的泛化能力。相关仿真和室内外实验结果表明所提包含误差抑制的成像模型以及重构算法可以有效提升系统在实际应用场景下的成像效果,在单个积分周期内实现了400~700 nm、共31个通道光谱图像的高质量重构。Objective Spectral imaging is a multidimensional information acquisition technology that combines traditional imaging with spectral analysis.Traditional spectral imaging technologies are often complex and costly,making them difficult to popularize in dynamic or transient scenes.In contrast,snapshot spectral imaging technology can capture spatial and spectral data within a single integration cycle of the imaging system.With the development of micro-nano optics,diffractive optical elements(DOEs)have been applied to snapshot spectral imaging due to their small size and high design flexibility,further reducing device volume and hardware costs.However,existing snapshot spectral imaging technologies based on DOEs are susceptible to the effects of diffractive lens fabrication accuracy and various errors during imaging.Moreover,they require sophisticated spectral image reconstruction algorithms,limiting their widespread application under practical conditions.To fully utilize the advantages of diffraction lens,we conduct in-depth research on their imaging and designing principles,error analysis,image acquisition,reconstruction,and deep learning algorithms.A new type of snapshot differentiable coded spectral imaging system is proposed,which can optimize the design of optical systems and achieve high-quality reconstruction of spectral images.The system demonstrates promising results in simulation and practical image restoration,showcasing its practical value.Methods We introduce a novel approach using a hybrid diffractive-refractive lens scheme,which effectively reduces the microstructure density of DOEs(Fig.1).This not only shortens the system focal length and decreases DOE fabrication complexity but also enhances the imaging signal-to-noise ratio.Furthermore,it employs a deep unfolding framework alongside an improved Transformer model(DUF-DST,Fig.2)to facilitate the reconstruction of diffraction spectral images.Building upon this framework,we conduct a comprehensive analysis of error sources in snapshot diffraction spectr
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.139.64.42