基于文本挖掘高脂血症证候规范化模型探讨  

Discussion of Standardized Model for Hyperlipidemia Syndrome Based on Text Mining

在线阅读下载全文

作  者:王璐瑶 梁斌 李绍熙 郝闻致 薛飞飞 WANG Luyao;LIANG Bin;LI Shaoxi;HAO Wenzhi;XUE Feifei(College of Traditional Chinese Medicine,Jinan University,Guangzhou,510632)

机构地区:[1]暨南大学中医学院,广州510632

出  处:《山西大同大学学报(自然科学版)》2024年第6期72-76,共5页Journal of Shanxi Datong University(Natural Science Edition)

基  金:国家自然科学基金项目[82074331]。

摘  要:目的基于文献分析探讨构建高脂血症证候规范化模型。方法通过对2000年1月1日至2022年12月1日高脂血症症状与辨证分型相关文献进行研究,对主要症状进行归纳,并将结果进行聚类验证。结果共纳入文献24篇,提取有效症状、证型数据132条,对相似症状合并得到65个证型。对所出现的证型进行规范化处理,按照临床病例报道的累计频次大小总结前5种依次为痰浊内阻证、脾肾阳虚证、肝郁脾虚证、气滞血瘀证、肝肾阴虚证该结果与聚类分析验证主要证型相同。结论利用文本挖掘结合专业知识对中医证候相关文献进行研究,是对证候规范化研究的有益探索,而聚类分析作为数据挖掘的重要算法之一,可以为证候的确定提供客观依据。Objective To explore the construction of a standardized model for hyperlipidemia syndrome based on literature analysis.Methods By studying the literature related to the symptoms and syndrome differentiation of hyperlipidemia from January 1,2000 to December 1,2022,the main symptoms were summarized,and the results were cluster validated.Results A total of 24 articles were included,and 132 valid symptom and syndrome data were extracted.65 syndrome types were obtained by combining similar symptoms.Standardize the syndrome types that appear,and summarize the top 5 according to the cumulative frequency of clinical case reports,which are phlegm turbidity resistance syndrome,spleen and kidney yang deficiency syndrome,liver depression and spleen deficiency syndrome,qi stagnation and blood stasis syndrome,and liver and kidney yin deficiency syndrome.This result is consistent with the main syndrome types verified by cluster analysis.Conclusion Using text mining combined with professional knowledge to study literature related to traditional Chinese medicine syndromes is a beneficial exploration for standardizing syndrome research.Cluster analysis,as one of the important algorithms in data mining,can provide objective basis for determining syndromes.

关 键 词:高脂血症 文献研究 聚类分析 证候规范化 

分 类 号:R241[医药卫生—中医诊断学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象