四川省彭州市HIV-1 CRF01_AE毒株分子网络特征分析  

Molecular network characteristics of HIV-1 CRF01_AE strain in Pengzhou, Sichuan Province

在线阅读下载全文

作  者:何佳 袁丹[2] 段振华[3] 龚芳红[3] 李苑 李一平 李娜[5] 杨洪[2] 周玚 廖瑞平 杨碧辉 韩金书 梁姝[2] 杨义 HE Jia;YUAN Dan;DUAN Zhenhua;GONG Fanghong;LI Yuan;LI Yiping;LI Na;YANG Hong;ZHOU Yang;LIAO Ruiping;YANG Bihui;HAN Jinshu;LIANG Shu;YANG Yi(I.School of Management/Sichuan Institute of Health,Chengdu University of Traditional Chinese Medicine,Chengdu 611137,Sichuan,China;Sichuan Center for Disease Control and Prevention,Chengdu 610041,Sichuan,China;Chengdu Center for Disease Control and Prevention,Chengdu 610047,Sichuan,China;School of Public Health,Chengdu University of Traditional Chinese Medicine,Chengdu 61ll137,Sichuan,China;Pengzhou Center for Disease Control and Prevention,Pengzhou 611900,Sichuan,China;School of Clinical Medicine,Chengdu University of Traditional Chinese Medicine,Chengdu 611137,Sichuan,China)

机构地区:[1]成都中医药大学管理学院/健康四川研究院,成都611137 [2]四川省疾病预防控制中心,成都610041 [3]成都市疾病预防控制中心,成都610047 [4]成都中医药大学公共卫生学院,成都611137 [5]彭州市疾病预防控制中心,四川彭州611900 [6]成都中医药大学临床医学院,成都611137

出  处:《中国艾滋病性病》2024年第11期1111-1116,共6页Chinese Journal of Aids & STD

基  金:四川省2022年中央财政补助艾滋病等重大传染病和地方病防治项目第一批。

摘  要:目的了解彭州市HIV-1 CRF01_AE毒株的分子网络特征及相关因素,为精准防控提供参考依据。方法收集2019年3月至2022年8月彭州市新报告HIV-1感染者血样,采用巢式PCR法扩增样本pol区基因并测序,使用基因距离法构建分子网络并分析其特征,采用χ^(2)检验和Logistic回归分析入网的影响因素。结果采集目标人群血样699份,经扩增获得667条序列,其中CRF01_AE毒株序列335条,基因距离在0.7%时CRF01_AE毒株成簇数最高,186条序列入网,入网率为55.52%,形成45个簇,在彭州市辖的12个街道/乡镇均有分布。入网影响因素分析结果显示,相比于19~49岁,≥50岁(OR=1.57,95%CI:1.78~3.17)的感染者更容易进入网络;相比于高中及以上文化程度,小学及以下文化程度(OR=4.64,95%CI:1.48~14.59)的感染者更容易进入网络;相比于LC镇,DJS镇(OR=0.22,95%CI:0.05~0.99)、GH镇(OR=0.19,95%CI:0.04~0.80)和TP街道(OR=0.34,95%CI:0.16~0.76)的感染者更不容易进入网络。网络中存在高危传播者45例(24.19%,45/186),以男性(68.89%,31/45)、≥50岁(93.33%,42/45)、异性性传播(100.00%,45/45)为主;高风险分子簇3个,分别包含26、22和19例感染者,49.25%(33/67)的感染者存在非婚商业异性性接触史。结论彭州市HIV-1 CRF01_AE毒株传播风险较高,传播范围较广,应加强对CRF01_AE毒株的长期动态监测,针对重点街道/乡镇和高风险传播者采取精准防控,加强对商业异性性行为的干预,减少新发感染。Objective To investigate the molecular network characteristics and related influencing factors of the HIV-1 CRF01_AE strain in Pengzhou, providing a reference for precise prevention and control. Methods Blood samples were collected from patients with newly reported HIV-1 infections in Pengzhou between March 2019 and August 2022. The pol gene regions of the samples were amplified using nested PCR and sequenced. A molecular network was constructed using genetic distance methods, and its characteristics were analyzed. Factors influencing network entry and was assessed through χ^(2) tests and logistic regression analysis. Results In total, 699 blood samples were collected, yielding 667 sequences, of which 335 were identified as CRF01_AE strains. The number of clusters peaked at a genetic distance of 0.70%, with 186 sequences entering the network, resulting in a network entry rate of 55.52%. These sequences formed 45 clusters, distributed across the 12 streets/towns in Pengzhou. Logistic regression analysis revealed that individuals aged ≥50 years(OR=1.57, 95%CI: 1.78-3.17) were more likely to enter the network compared to those aged 19-49. Individuals with primary education or below(OR=4.64, 95%CI: 1.48-14.59) were more likely to enter the network compared to those with high school education or above. Compared to LC Town, individuals from DJS Town(OR=0.22, 95%CI: 0.05-0.99), GH Town(OR=0.19, 95%CI: 0.04-0.80), and TP Street(OR=0.34, 95%CI: 0.16-0.76) were less likely to enter the network. There were 45 high-risk transmitters(24.19%, 45/186) within the network, and they were predominantly male(68.89%, 31/45), aged ≥50 years(93.33%, 42/45), and exclusively involved in heterosexual transmission(100.00%, 45/45). Three high-risk clusters comprising 26, 22, and 19 individuals were identified. A total of 49.25%(33/67) of the individuals in these clusters reported a history of non-marital commercial heterosexual contact. Conclusions The transmission risk of HIV-1 CRF01_AE strains in Pengzhou is high and widespread. Cont

关 键 词:1型艾滋病病毒 CRF01_AE毒株 分子网络 高危传播者 

分 类 号:R373.9[医药卫生—病原生物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象