检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李宗恩 谢艺 LI Zongen;XIE Yi(Guangxi Computing Center Co.,Ltd.,Nanning 530000,China)
出 处:《移动信息》2024年第11期287-289,共3页Mobile Information
摘 要:在我国城镇化快速发展的背景下,城市道路交通问题日趋严重,对道路交通管理的智能化要求也越来越高。深度学习是人工智能的重要研究方向,在道路图像识别、智能交通管理等方面具有广阔的应用前景。文中探讨了利用深度学习的交通图像识别技术及智能交通管理系统的开发。通过介绍卷积神经网络(CNN)和循环神经网络(RNN)等深度学习模型在交通标志识别、车辆检测与分类中的应用,分析AI识别技术在交通事件检测中的关键作用,并讨论了智能交通管理系统如何通过AI技术实现交通信号控制和流量优化。Under the background of the rapid development of urbanization in our country,urban road traffic problems are becoming more and more serious,and the intelligent requirements for road traffic management are also getting higher and higher.Deep learning is an important research direction of artificial intelligence,and has broad application prospects in road image recognition and intelligent traffic management.This paper discusses the development of traffic image recognition technology and intelligent traffic management system using deep learning.By introducing the application of deep learning models such as convolutional neural networks(CNN)and recurrent neural networks(RNN)in traffic sign recognition,vehicle detection and classification,analyzing the key role of AI recognition technology in traffic incident detection,and discussing how the intelligent traffic management system uses AI technology implementation of traffic signal control and flow optimization.
分 类 号:TN8[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147