Gaussian Mixture-Learned Approximate Message Passing(GM-LAMP)Based Hybrid Precoders for mmWave Massive MIMO Systems  

在线阅读下载全文

作  者:Shoukath Ali K Sajan P Philip Perarasi T 

机构地区:[1]Department of Electronics and Communication Engineering,Presidency University,Itgalpura,Rajanukunte,Yelahanka,Bengaluru,Karnataka 560064,India [2]Department of Electronics and Communication Engineering,Bannari Amman Institute of Technology,Erode,Tamil Nadu,638401,India

出  处:《China Communications》2024年第12期66-79,共14页中国通信(英文版)

摘  要:Hybrid precoder design is a key technique providing better antenna gain and reduced hardware complexity in millimeter-wave(mmWave)massive multiple-input multiple-output(MIMO)systems.In this paper,Gaussian Mixture learned approximate message passing(GM-LAMP)network is presented for the design of optimal hybrid precoders suitable for mmWave Massive MIMO systems.Optimal hybrid precoder designs using a compressive sensing scheme such as orthogonal matching pursuit(OMP)and its derivatives results in high computational complexity when the dimensionality of the sparse signal is high.This drawback can be addressed using classical iterative algorithms such as approximate message passing(AMP),which has comparatively low computational complexity.The drawbacks of AMP algorithm are fixed shrinkage parameter and non-consideration of prior distribution of the hybrid precoders.In this paper,the fixed shrinkage parameter problem of the AMP algorithm is addressed using learned AMP(LAMP)network,and is further enhanced as GMLAMP network using the concept of Gaussian Mixture distribution of the hybrid precoders.The simula-tion results show that the proposed GM-LAMP network achieves optimal hybrid precoder design with enhanced achievable rates,better accuracy and low computational complexity compared to the existing algorithms.

关 键 词:approximate message passing deep neu-ral network Gaussian Mixture model massive MIMO millimeter wave 

分 类 号:TN929.5[电子电信—通信与信息系统] TP18[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象