检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ke Jianpeng Wang Wenqi Yang Kang Wang Lina Ye Aoshuang Wang Run
机构地区:[1]Key Laboratory of Aerospace Information Security and Trusted Computing(Wuhan University),Ministry of Education,Wuhan 430072,China [2]School of Cyber Science and Engineering,Wuhan University,Wuhan 430072,China
出 处:《China Communications》2024年第12期139-151,共13页中国通信(英文版)
基 金:This work was partly supported by the National Natural Science Foundation of China under No.62372334,61876134,and U1836112.
摘 要:Deep neural networks(DNNs)are poten-tially susceptible to adversarial examples that are ma-liciously manipulated by adding imperceptible pertur-bations to legitimate inputs,leading to abnormal be-havior of models.Plenty of methods have been pro-posed to defend against adversarial examples.How-ever,the majority of them are suffering the follow-ing weaknesses:1)lack of generalization and prac-ticality.2)fail to deal with unknown attacks.To ad-dress the above issues,we design the adversarial na-ture eraser(ANE)and feature map detector(FMD)to detect fragile and high-intensity adversarial examples,respectively.Then,we apply the ensemble learning method to compose our detector,dealing with adver-sarial examples with diverse magnitudes in a divide-and-conquer manner.Experimental results show that our approach achieves 99.30%and 99.62%Area un-der Curve(AUC)scores on average when tested with various Lp norm-based attacks on CIFAR-10 and Im-ageNet,respectively.Furthermore,our approach also shows its potential in detecting unknown attacks.
关 键 词:adversarial example detection ensemble learning feature maps fragile and high-intensity ad-versarial examples
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.91.183