检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵星越 林艳[1] 丁正焱 ZHAO Xingyue;LIN Yan;DING Zhengyan(School of Information Network Security,People's Public Security University of China,Beijing 100038,China)
机构地区:[1]中国人民公安大学信息网络安全学院,北京100038
出 处:《地球信息科学学报》2024年第12期2701-2711,共11页Journal of Geo-information Science
基 金:国家自然科学基金项目(41971367)。
摘 要:自动车牌识别(ANPR)数据是当前公安工作中获取车辆轨迹的主要来源之一,基于ANPR数据发现涉案车辆的时空关联车辆,对于团伙犯罪防控具有重要意义。在实际工作中发现,团伙车辆会存在主观避嫌意图,导致出现故意远距离跟随等与传统伴随关系不同的时空关联模式,而现有方法难以有效识别,为此,本文基于车牌自动识别(ANPR)数据,提出了团伙犯罪的时空关联车辆发现方法。①通过分析团伙车辆的跟随策略,梳理出“近距离跟随模式”、“故意远距离跟随模式”、“另择路线前往模式”3种车辆时空关联模式;②基于ANPR数据构建关联车辆数据模型,并提出车辆关联的时空约束参数;在此基础上,提出了时空关联车辆的发现方法;③以B城市为例,采用团伙犯罪车辆的相关ANPR数据进行试验与分析,基于团伙案件历史数据对时空约束参数阈值进行定量评估。在此基础上,对某典型案件进行时空关联车辆分析,将本文方法与频繁序列挖掘、计算伴随概率2种方法对比,本文方法有效率平均可达87.59%,优于对比方法,试验结果表明,本文方法能够有效发现故意远距离跟随、另择路线前往等传统方法难以发现的时空关联车辆,能够为公安部门开展团伙犯罪防控工作提供新思路和技术支持。This paper addresses the challenge of discovering spatio-temporally associated vehicles involved in crimes using Automatic Number Plate Recognition(ANPR)data,which is a crucial resource in public security work for obtaining vehicle trajectories.The significance of identifying associated vehicles in the context of group-crime prevention and control is emphasized.Practical experiences reveal that criminal groups often adopt subjective strategies to avoid suspicion,leading to unique spatio-temporal association patterns such as intentional long-distance following,which differ from traditional accompanying relationships and are difficult to detect with existing methods.Oriented to the actual needs of public security work,from the perspective of group-crime,to tackle this issue,the paper first analyzes the travel patterns of criminal group vehicles and categorizes them into three main spatio-temporal association modes:close-following mode,intentional long-distance following mode,and alternative-route mode.These modes reflect the different strategies used by criminals to avoid detection,ranging from maintaining close proximity to the peer vehicle to deliberately choosing different routes.Based on these patterns,the paper develops a data model using ANPR data.The study introduces spatio-temporal constraint parameters to better capture the association relationships between vehicles.These parameters include the monitoring point time constraint(Δti),point accompanying number(Num_Wx),continuous point accompanying number(Con_Num_Wx),intermittent accompanying distance(d),and accompanying duration(δt).The proposed method for discovering spatio-temporally associated vehicles leverages these parameters to identify potential criminal associations.The methodology involves preprocessing ANPR data to obtain vehicle trajectories,extracting candidate accompanying vehicle sets,calculating spatio-temporal constraint parameters for each candidate vehicle,and setting thresholds for these parameters to discover associated vehicles contain
关 键 词:自动车牌识别 时空关联 伴随车辆 时空约束 团伙犯罪 远距离跟随 时空约束参数
分 类 号:P208[天文地球—地图制图学与地理信息工程] D917.6[天文地球—测绘科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7