环境激励下的Bayesian SFFT模态参数识别法及不确定性量化研究  

Bayesian SFFT modal parametric identification method and uncertainty quantification under environmental excitation

在线阅读下载全文

作  者:郭琦[1] 张卓 蒲广宁 GUO Qi;ZHANG Zhuo;PU Guangning(College of Civil Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China)

机构地区:[1]西安建筑科技大学土木工程学院,西安710055

出  处:《振动与冲击》2024年第23期194-202,共9页Journal of Vibration and Shock

基  金:陕西省自然科学基础研究计划项目(2023-JC-YB-286)。

摘  要:针对传统Bayesian模态参数识别方法存在识别结果不确定性和量化指标单一的问题,提出了贝叶斯缩放快速傅里叶变换(Bayesian scaled fast Fourier transform,Bayesian SFFT)模态参数识别法,通过求解四维数值的优化,得到模态参数的最佳估值,并采用蒙特卡罗抽样的方法得到后验协方差矩阵和信息熵,实现对识别结果进行双重不确定性量化的目的。最后,通过数值模拟与工程应用验证了该方法的有效性,并研究了频带宽度系数k对识别结果的影响以及对比了变异系数与信息熵的量化效果。结果表明,将频带宽度系数k限制在7~9之间能够确保误差与不确定性的平衡;在阻尼比识别结果的量化中,信息熵的量化效果优于变异系数的量化效果。Here,aiming at problems of uncertainty of identification results and single quantification index existing in traditional Bayesian modal parametric identification method,Bayesian scaled FFT(SFFT)modal parametric identification method was proposed.By solving a 4-dimensional numerical optimization problem,optimal estimations of modal parameters were obtained,and Monte Carlo sampling was used to obtain posterior covariance matrix and information entropy,and realize the purpose of dual-uncertainty quantification of identification results.Finally,the effectiveness of the proposed method was verified with numerical simulation and engineering applications,and effects of the bandwidth coefficient k on the recognition results were studied,and the quantification effects of variation coefficient and information entropy were compared.The results showed that limiting the bandwidth coefficient k within the range of 7~9 can ensure a balance between error and uncertainty;in quantification of damping ratio recognition results,the quantization effect of information entropy is better than that of variation coefficient.

关 键 词:模态参数识别 不确定性量化 贝叶斯缩放快速傅里叶变换(Bayesian SFFT) 蒙特卡罗抽样 频带宽度系数 变异系数 信息熵 

分 类 号:U441[建筑科学—桥梁与隧道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象