检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卜浏 BU Liu(Jiangsu Union Technical Institute,Nanjing 210000,China)
出 处:《无线互联科技》2024年第22期119-121,共3页Wireless Internet Science and Technology
摘 要:针对无线传感网络节点入侵检测方法难以准确识别,导致风险检测率低的问题,文章提出了基于大数据挖掘的检测方法。该方法通过节点分类、异常特征提取结合AdaBoost算法,实现入侵数据的精准分类;利用簇化网络结构融合数据,经特征选择和归一化处理后,建立基于数据约减和逻辑回归的检测模型;通过处理约减后的数据并计算特征权重,构建判断矩阵,实现准确高效的入侵风险检测。实验结果表明,该方法有效应对网络复杂性,显著提升风险检测率;所提方法能够高效准确地检测入侵风险,为无线传感网络安全稳定运行提供坚实保障。It is difficult to accurately identify the intrusion detection method of wireless sensor network nodes,which leads to the problem of low risk detection rate.A detection method based on big data mining is proposed.Through node classification,abnormal feature extraction and AdaBoost algorithm,the accurate classification of intrusion data is realized.Using the cluster network structure fusion data,after feature selection and normalization processing,a detection model is built based on data reduction and logistic regression.By processing the reduced data and calculating the feature weights,the judgment matrix is constructed to realize accurate and efficient intrusion risk detection.The experimental results show that the proposed method effectively handles the network complexity and significantly improves the risk detection rate.The experiment proves that it can efficiently and accurately detect the intrusion risk,and provides a solid guarantee for the safe and stable operation of the wireless sensor network.
关 键 词:大数据挖掘 无线传感网络 网络节点 节点入侵 入侵风险检测
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195