检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郝宇星 吴宏宇 张玉玲[1] 吴青建 谭莉杰 阎绍泽[1] HAO Yuxing;WU Hongyu;ZHANG Yuling;WU Qingjian;TAN Lijie;YAN Shaoze(State Key Laboratory of Tribology in Advanced Equipment(SKLT),Department of Mechanical Engineering,Tsinghua University,Beijing 100084,China;School of Engineering and Technology,China University of Geosciences(Beijing),Beijing 100083,China)
机构地区:[1]清华大学机械工程系,高端装备界面科学与技术全国重点实验室,北京100084 [2]中国地质大学(北京)工程技术学院,北京100083
出 处:《清华大学学报(自然科学版)》2024年第12期2105-2114,共10页Journal of Tsinghua University(Science and Technology)
基 金:国家自然科学基金青年科学基金项目(52305263,52305264);国家自然科学基金面上项目(12172188);北京市自然科学基金面上项目(3242007);中国博士后科学基金面上项目(2023M731946,2022M721822);清华大学水木学者计划(2022SM018)。
摘 要:优化水下航行器表面微观形貌已成为提升其水动力性能的重要手段之一,该文开展了水下滑翔机翼面沟槽参数的多目标设计优化,以提升水下滑翔机综合性能。首先基于计算流体力学(CFD)方法与多项式拟合,建立了含翼面沟槽参数的水下滑翔机水动力方程。接着将水动力方程代入整机动力学模型,实现了水下滑翔机航速、静稳定性和能耗的定量评估。然后基于动力学仿真结果与多项式拟合,建立了水下滑翔机性能评估模型的代理模型,并结合第二代非劣排序遗传算法(NSGA-II)实现了翼面沟槽参数的高效多目标优化计算,数值算例表明,优化结果显著提升了水下滑翔机的综合性能。最后采用3D打印技术试制了机翼样机,证明了设计方法的工程可行性。[Objective] Underwater glider is a low-energy and buoyancy-driven exploration robot that is used in long-term ocean exploration tasks,such as anticyclonic eddy observations,marine noise detection,and biogeochemical analyses.To enhance its overall performance,multidisciplinary optimization during the design and application phases is crucial.An effective method for enhancing hydrodynamic performance involves optimizing the surface micromorphology of underwater vehicles.Drawing inspiration from this micromorphology design concept,this paper conducts a multiobjective design optimization of the riblet parameters on the wing surface of an underwater glider to enhance its overall performance.[Methods] This study begins with the “Petrel-II” underwater glider prototype,proposing an initial riblet design scheme based on the movement characteristics of the underwater glider.Subsequently,a computational fluid dynamics simulation model of the entire glider was developed.An optimized Latin hypercube experimental design was used to obtain sample riblet parameters and attack angles,followed by computational fluid dynamics simulations under various operating conditions.Hydrodynamic equations,including riblet parameters,were established through polynomial fitting and computational fluid dynamics results.These hydrodynamic equations were integrated into the dynamic model of the glider,allowing for a comprehensive dynamic analysis that includes riblet effects.Using the entire vehicle dynamic model,a theoretical derivation of the underwater glider's speed,static stability,and energy consumption evaluation was achieved,enabling a quantitative and comprehensive performance analysis.A surrogate model for performance evaluation was established using optimized Latin hypercube experimental designs,dynamic simulations,and performance models,considerably improving computational efficiency.The optimization objective function for the riblet parameters of the wing surface was determined.Riblet spacing,depth,and direction were selected as op
关 键 词:水下滑翔机 翼面沟槽 计算流体力学 动力学分析 多目标优化
分 类 号:TH113[机械工程—机械设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112