船舶远程驾驶控制系统设计与应用  

Design and application of ship remote-driving control system

在线阅读下载全文

作  者:李晨[1,2] 严新平[1,3,4] 刘佳仑 汤敏[1,3] 陈光霖 林楠[1,2] LI Chen;YAN Xin-ping;LIU Jia-lun;TANG Min;CHEN Guang-lin;LIN Nan(State Key Laboratory of Maritime Technology and Safety,Wuhan University of Technology,Wuhan 430063,Hubei,China;School of Transportation and Logistics Engineering,Wuhan University of Technology,Wuhan 430063,Hubei,China;Intelligent Transport Systems Research Center,Wuhan 430063,Hubei,China;Hubei Donghu Laboratory,Wuhan 430063,Hubei,China)

机构地区:[1]武汉理工大学水路交通控制全国重点实验室,湖北武汉430063 [2]武汉理工大学交通与物流工程学院,湖北武汉430063 [3]武汉理工大学智能交通系统研究中心,湖北武汉430063 [4]湖北东湖实验室,湖北武汉430063

出  处:《交通运输工程学报》2024年第5期333-347,共15页Journal of Traffic and Transportation Engineering

基  金:国家重点研发计划(2022YFB4301402);国家自然科学基金项目(51920105014,52272425);中央高校基本科研业务费专项资金项目(2024-JSJ-A1-02)。

摘  要:为保障“岸基驾控,船端值守”模式下船舶的安全高效航行与稳定作业控制,提出了船舶远程驾驶控制系统的定义和“船-岸-云”协同的跨域融合架构;针对随机通信环境下的时变网络传输时延问题,建立递增冗余重传和时延容忍补偿相结合的视频通信处理机制,使用Luenberger状态观测器改进网络化控制性能,避免由于环境干扰或模型失配引起的控制量偏移;以内河典型64 TEU模型船为研究原型,开发系统的模块化功能和标准接口协议,在690 km外控制站验证了方法的有效性。研究结果表明:与直航和路径跟随相比,回转工况对网络波动表现出更高的敏感程度,在极限转角位置和转速抖动处船载底层硬件设备响应时间由124.53 ms上升至135.76 ms;经优化后的视频通信处理机制能够消除5%丢包和40 ms网络抖动影响,端到端传输时延稳定在150~200 ms,视频卡顿率控制在1.2%以内;路径跟随最大横向偏移误差为1.54 m,平均误差为0.61 m,有效提升了远程驾驶控制系统的稳定性与可靠性,能够满足船舶远程驾驶典型业务场景需求;接管时由于驾驶员需要一定时间熟悉船舶当前的驾驶任务和运动状态,系统立刻退出控制回路的方式会导致偏移的增加并出现短暂的抖动和振荡。To ensure safe and efficient navigation and stable operation control under the"shore-based control supplemented by onboard monitoring and watch-keeping"mode,the definition of ship remote-driving control system and"ship-shore-cloud"cross-domain collaborative integrated fusion architecture were proposed.Aiming at the network time-varying delay problem under stochastic communication environments,incremental redundant retransmission and delay-tolerance compensation methods were integrated to establish the video communication processing mechanism.The Luenberger state observer was constructed to improve the networked control performance,and the control quantity offset caused by environmental interference or model mismatch could be avoided.A typical 64 TEU inland water model ship was taken as the research prototype to develop the system's modularized functions and standard interface protocols,and the effectiveness of the proposed method was verified at a control station 690 km away.Experimental results indicate that turning is more sensitive to network fluctuations compared with straight and path-following conditions.Specifically,the responding time of shipboard underlying hardware increases from 124.53 ms to 135.76 ms at the ultimate turning angle and rotation jitters.After optimization,the influence of 5% packet loss and 40 ms network jitters is eliminated,the end-to-end transmission delay is stabilized at 150-200 ms,and the video stutter rate is controlled within 1.2% by the video communication processing mechanism.The maximum lateral offset error of the path following is 1.54 m,with an average error of 0.61 m,improving the stability and reliability of remote-driving control system effectively,so that it can meet the requirements of typical remote-driving scenarios.As the driver needs some time to familiar with the ship's current steering task and motion state,immediate exit from the control loop will result in increased offsets,temporary jitter,and oscillations during take-over.

关 键 词:水路运输 岸基驾控 Luenberger状态观测器 时延容忍补偿 网络化控制 

分 类 号:U664.82[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象