机构地区:[1]Durham School of Architectural Engineering and Construction,University of Nebraska–Lincoln,Omaha,NE,68182 USA [2]Dept.of Structural Engineering,Cairo Univ.,Giza 12613,Egypt [3]formerly,Postdoctoral Fellow,Dept.of Civil and Environmental Engineering,Colorado State Univ.,Fort Collins,CO 80523 USA [4]Department of Economics,Colorado State University,Fort Collins,CO 80521 USA [5]Harold H.Short Endowed Chair Professor,Department of Civil and Environmental Engineering,Colorado State University,Fort Collins,CO 80523 USA [6]School of Marine and Atmospheric Sciences,Stony Brook University,Stony Brook,NY
出 处:《Resilient Cities and Structures》2024年第2期66-84,共19页韧性城市与结构(英文)
基 金:funded through a cooperative agreement between the U.S.National Institute of Standards and Technology and Colorado State University(NIST Financial Assistance Award Numbers:70NANB15H044 and 70NANB20H008).
摘 要:The multi-disciplinary data and information available at a community level comprise the foundation of natural hazard resilience modeling.These data enable and inform mitigation and recovery planning decisions prior to and following damaging events such as earthquakes.This paper presents a multi-disciplinary seismic resilience mod-eling methodology to assess the vulnerability of the built environment and economic systems.This methodology can assist decision-makers with developing effective mitigation policies to improve the seismic resilience of com-munities.Two complementary modeling strategies are designed to examine the impacts of scenario earthquakes from a combined engineering and economic perspective.The engineering model is developed using a probabilis-tic fragility-based modeling approach and is analyzed using Monte Carlo(MC)simulations subject to seismic multi-hazard,including simulated ground shaking and resulting liquefaction of the soil,to quantify the physical damage to buildings and electric power substations(EPS).The outcome of the analysis is subsequently used as input to repair and recovery models to quantify repair cost and recovery time metrics for buildings and as input to functionality models to estimate the functionality of individual buildings and substations by accounting for their interdependency.The economic model consists of a spatial computable general equilibrium(SCGE)model that aggregates commercial buildings into sectors for retail,manufacturing,services,etc.,and aggregates residential buildings into a wide range of household groups.The SCGE model employs building functionality estimates to quantify the economic losses.The outcomes of this integrated modeling consist of engineering and economic impact metrics,which are used to investigate mitigation actions to help inform a community on approaches to achieve its resilience goals.An illustrative case study of Salt Lake County(SLC),Utah,developed through an extensive collaborative partnership and engagement with SLC officials,is presen
关 键 词:Community resilience Infrastructure systems MULTI-DISCIPLINARY Mitigation policy Functional recovery
分 类 号:P31[天文地球—固体地球物理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...