检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:纪光英 谭俊哲[1,2] 袁鹏 王树杰[1,2] JI Guangying;TAN Junzhe;YUAN Peng;WANG Shujie(College of Engineering,Ocean University of China,Shandong Qingdao 266100,China;Shandong Key Laboratory of Marine Engineering,Shandong Qingdao 266100,China)
机构地区:[1]中国海洋大学工程学院,山东青岛266100 [2]山东省海洋工程重点实验室,山东青岛266100
出 处:《机械设计与制造》2024年第12期280-284,291,共6页Machinery Design & Manufacture
基 金:海上可再生能源混合驱动的无人帆船基础研究(51779238)。
摘 要:刚性翼帆无人帆船在阵风或恶劣海况下航行时,作用在翼帆上的空气动力强度变化较大,导致翼型空气动力学性能变差,影响无人帆船的航行性能。采用Bezier曲线方程建立翼型的数学模型和NSGA-II多目标优化算法,集成三维CAD软件SolidWorks和CFD软件STAR CCM+,以最大推力和最小侧向力为优化目标对刚性翼帆的翼型进行优化。结果表明,在15°帆向角下和(30~80)°航向角范围内,优化翼型比初始翼型推力平均值增加,侧向力基本保持不变。优化翼型在保证无人帆船航行稳性不变的情况下,有助于提升无人帆船的快速性和机动性。When rigid wing-sail unmanned sailboat sails in gusty or bad sea conditions,the aerodynamic strength acting on the wing sail changes greatly,resulting in poor aerodynamic performance of the airfoil,which affects the sailing performance of unmanned sailboat.Bezier curve equation was used to establish the airfoil mathematical model and NSGA-II multi-objective optimization algorithm,integrated three-dimensional CAD software SolidWorks and CFD software STAR CCM+,to optimize the rigid wing sail airfoil with maximum thrust and minimum lateral force as the optimization objective.The results show that in the range of 15°sail Angle and(30~80)°heading Angle,the average thrust of the optimized airfoil is higher than that of the original airfoil,and the lateral force is basically unchanged.The optimization of airfoil is helpful to improve the speed and maneuverability of unmanned sailboat under the condition that the sailing stability is not changed.
关 键 词:无人帆船 刚性翼帆 翼型优化 Bezier参数化 NSGA-II
分 类 号:TH16[机械工程—机械制造及自动化] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222