基于激光视觉传感器的智能人机交互系统设计  被引量:1

Design of intelligent human machine interaction system based on laser vision sensor

在线阅读下载全文

作  者:邵婕 SHAO Jie(Nantong Institute of Technology,Nantong Jiangsu 226001,China)

机构地区:[1]南通理工学院,江苏南通226001

出  处:《激光杂志》2024年第11期203-208,共6页Laser Journal

基  金:教育部产学合作协同育人项目(No.220603177171555)。

摘  要:常规的智能人机交互系统主要采用视觉模型获取用户交互定位信息,其存在一定的定位误差,导致系统任务数量较少。因此,提出基于激光视觉传感器的智能人机交互系统设计。在系统的硬件设计上,设计俯仰与旋转双关节的全范围激光视觉传感器。在系统的软件设计上,通过世界坐标系与摄像机坐标系之间的转换,为传感器回传的定位信息添加畸变系数,校正系统用户的交互定位,并根据用户给定的交互指令数量规划交互指令任务约束,引入意图识别技术分析交互指令特征并执行相应的操作,实现系统的人机交互功能。系统性能测试结果表明,该系统在多级交互指令数量下完成的任务数量较多,系统运行性能较优。The conventional intelligent human-computer interaction system mainly uses visual models to obtain user interaction positioning information,but it has certain positioning errors,resulting in a small number of system tasks.Therefore,the design of an intelligent human-computer interaction system based on laser vision sensors is proposed.In the hardware design of the system,design a full range laser vision sensor with dual joints for pitch and rotation.In the software design of the system,distortion coefficients are added to the positioning information returned by sensors through the conversion between the world coordinate system and the camera coordinate system,correcting the interaction positioning of system users,and based on the number of interaction instructions given by users,interaction instruction task constraints are planned,and intention recognition technology is introduced to analyze the characteristics of interaction instructions and perform corresponding operations,achieving the human-machine interaction function of the system.The system performance test results show that the system completes a larger number of tasks under the number of multi-level interactive instructions,and the system runs better.

关 键 词:人机交互 交互系统 激光视觉传感器 智能交互 系统设计 人机交互系统 

分 类 号:TN391[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象