检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李克文[1] 刘文龙[1] 李国庆 姚贤哲 蒋衡杰 LI Ke-wen;LIU Wen-long;LI Guo-qing;YAO Xian-zhe;JIANG Heng-jie(College of Computer Science and Technology,China University of Petroleum(East China),Qingdao 266580,China)
机构地区:[1]中国石油大学(华东)计算机科学与技术学院,山东青岛266580
出 处:《计算机工程与设计》2024年第12期3583-3591,共9页Computer Engineering and Design
基 金:国家自然科学基金重大基金项目(51991365);山东省自然科学基金项目(ZR2021MF082)。
摘 要:针对地震相人工注释耗时、传统半监督方法易受不可靠伪标签干扰等缺点,提出一种基于可靠性估计的半监督地震相识别方法。使用可靠性估计网络过滤地震相伪标签中的不可靠区域,避免由错误监督信号引起的认知偏差,基于平均教师模型扩展多种类型的辅助解码器用于一致性正则化,进一步提高模型的泛化性和鲁棒性。在荷兰F3地震数据集上的实验结果表明,使用少量的标注样本MIOU可达90.33%,有效提升了容易分类混淆的地震相的识别性能。Aiming at the disadvantages of time-consuming manual annotation of seismic facies and the susceptibility of traditional semi-supervised methods to interference from unreliable pseudo-labels,a semi-supervised seismic facies identification method based on reliability estimation was proposed.A reliability estimation network was utilized to filter unreliable regions in pseudo-labels of seismic facies to avoid cognitive bias caused by erroneous supervision signals and extend multi-type auxiliary decoders based on the mean teacher model for consistency regularization to improve generalization and robustness of the model.Experimental results on the Netherlands F3 dataset demonstrate that using a few labeled samples,MIOU can reach 90.33%,effectively improves the identification performance of seismic facies that are easily confused by classification.
关 键 词:地震相识别 深度学习 半监督学习 语义分割 自训练 一致性正则化 可靠性估计
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222