检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:关培兴 GUAN Peixing(Guangdong Huiying Electric Power Engineering Co.,Ltd.,Foshan 528000,China)
机构地区:[1]广东汇盈电力工程有限公司,广东佛山528000
出 处:《通信电源技术》2024年第23期210-212,共3页Telecom Power Technology
摘 要:配电网故障诊断的准确性和实时性对保障电力系统安全稳定运行至关重要。提出一种基于人工智能的配电网自动化故障诊断方法。该方法通过多源数据采集、特征提取与选择、支持向量机(Support Vector Machine,SVM)分类模型等技术,实现了对单相接地、两相短路、三相短路和断线等典型故障的快速精准诊断。实验结果表明,与传统专家系统相比,该方法在诊断准确率和实时性方面均有显著提升。研究成果为提高配电网自动化水平提供了新的技术途径,对推动智能电网建设具有重要意义。The accuracy and real-time performance of distribution network fault diagnosis is very important to ensure the safe and stable operation of power system.This paper presents an automatic fault diagnosis method for distribution network based on artificial intelligence.Through multi-source data acquisition,feature extraction and selection,Support Vector Machine(SVM)classification model and other technologies,the method realizes the rapid and accurate diagnosis of typical faults such as single-phase grounding,two-phase short circuit,three-phase short circuit and line break.The experimental results show that compared with the traditional expert system,the proposed method has significantly improved the diagnostic accuracy and real-time performance.The research results provide a new technical way to improve the automation level of distribution network and have important significance to promote the construction of smart grid.
分 类 号:TM76[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222