高炉冷却板挂渣能力数值模拟分析  被引量:1

Slag-hanging capacity numerical simulation and analysis of blast furnace copper cooling plate

在线阅读下载全文

作  者:张振 唐珏 储满生 石泉 王川强 ZHANG Zhen;TANG Jue;CHU Mansheng;SHI Quan;WANG Chuanqiang(School of Metallurgy,Northeastern University,Shenyang 110819,Liaoning,China;Engineering Research Center of Frontier Technologies for Low-Carbon Steelmaking(Ministry of Education),Shenyang 110819,Liaoning,China;Liaoning Low-Carbon Steelmaking Technology Engineering Research Center(Northeastern University),Shenyang 110819,Liaoning,China)

机构地区:[1]东北大学冶金学院,辽宁沈阳110819 [2]教育部低碳钢铁前沿技术工程研究中心,辽宁沈阳110819 [3]辽宁省低碳钢铁前沿技术工程研究中心,辽宁沈阳110819

出  处:《钢铁》2024年第11期54-64,共11页Iron and Steel

基  金:国家自然科学基金资助项目(52404343,52274326);中国宝武低碳冶金创新基金资助项目(BWLCF202109)。

摘  要:高炉中后期主要依靠渣皮保护炉体,合理的操作炉型有助于高炉维持煤气流均匀分布和炉况顺行。目前针对应用冷却板的高炉,存在挂渣机理研究不全面和渣皮计算方法不合理的问题。因此基于ANSYS“生死单元”技术,通过构建冷却板三维挂渣机理模型,以及设计冷却板渣皮循环迭代计算方法解决以上问题,并且重点分析了不同工况对于高炉挂渣行为的影响。分析结果表明,煤气温度从1 200℃上升至1 600℃,渣皮厚度呈抛物线趋势下降,渣皮从56 mm下降到8 mm左右。当煤气温度为1 550℃时,冷却板最高温度为122℃,超过安全工作温度。导热系数从1.2 W/(m^(2)·℃)上升至2.2 W/(m^(2)·℃),渣皮厚度能够增厚76%~85%,但渣皮均匀性从86.1%下降至79.5%。导热系数增大0.2 W/(m^(2)·℃),渣皮增厚约1.6~9.6 mm。挂渣温度从1 050℃升高至1 150℃,渣皮能够增厚33%~125%。挂渣温度上升50℃,渣皮平均增厚约6.9~7.6 mm,渣皮均匀性整体上升10%。冷却水温度降低10℃,冷却板最高温度和测点温度能够降低约10℃。冷却水速度上升1 m/s,冷却板最高温度能够降低5~10℃。综合机理模型分析以及现场实际情况,建议渣皮导热系数保持在1.6 W/(m^(2)·℃)以下,挂渣温度保持在1 100~1 150℃,冷却水速度为1.5~2.5 m/s,冷却水温度为25~35℃时,冷却板挂渣比较合理,高炉能够保持比较均匀的操作炉型,以上分析为高炉延长炉役,保持顺行提供了理论依据和基础。In the middle and late stage of the blast furnace,the slag layer was mainly used to protect the furnace body.Reasonable operation of the furnace type helped the blast furnace to maintain uniform distribution of gas flow and smooth operation of the furnace.However,there were some problem in the blast furnace with cooling plate,such as incomplete research on slag hanging mechanism and unreasonable calculation method of slag layer.Based on ANSYS"life and death unit"technology,3D slag hanging mechanism model of the cooling plate had been constructed,designed an iterative method of slag cycle in the cooling plate model,it helped to solve the above problems.The influence of working conditions on slag-hanging ability was analyzed emphatically.The analysis result showed,the gas temperature increased from 1200℃to 1600℃,the slag layer decreased from 56 mm to 8 mm.When the gas temperature was 1550℃,the copper cooling plate would exceeded safe operating temperature(120℃).The thermal conductivity increased from 1.2 W/(m^(2)·℃)to 2.2 W/(m^(2)·℃),and the slag layer was able to be thickened by 76%-85%,however the slag layer would became non-uniform.When the temperature of slag-hanging increased by 50℃,the slag layer increased by about 6.9-7.6 mm,and the uniformity of slag layer increased by 10%.The maximum temperature of cooling plate could reduced by 5-10℃when the cooling water speed increased by 1 m/s.The cooling water temperature was reduced by 10℃,and the maximum temperature of cooling plate and the measuring point temperature could reduced about 10℃.Comprehensive mechanism model analysis and the actual situation on site,it was recommended that the slag skin thermal conductivity coefficient was maintained at 1.6 W/(m^(2)·℃)or less,the slag hanging temperature was maintained at 1100-1150℃,the cooling water speed was at 1.5-2.5 m/s,and the cooling water temperature was at 25-35℃,the cooling plate hanging slag was more reasonable,and the blast furnace could maintain a more uniform operation of the f

关 键 词:高炉 冷却板 挂渣能力 传热 ANSYS“生死单元” 数值模拟 

分 类 号:TF57[冶金工程—钢铁冶金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象