检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yuxiang Liu Jianghuai Yuan Jiantao Zhou Kewen Pan Ran Zhang Rongxia Zhao Lin Li Yihe Huang Zhu Liu
出 处:《Light(Science & Applications)》2024年第11期2781-2793,共13页光(科学与应用)(英文版)
基 金:Ningbo Yongjiang Science and Technology Programme(2023A-161-C).
摘 要:Rapid synthesis of high-entropy alloy nanoparticles(HEA NPs)offers new opportunities to develop functional materials in widespread applications.Although some methods have successfully produced HEA NPs,these methods generally require rigorous conditions such as high pressure,high temperature,restricted atmosphere,and limited substrates,which impede practical viability.In this work,we report laser solid-phase synthesis of CrMnFeCoNi nanoparticles by laser irradiation of mixed metal precursors on a laser-induced graphene(LIG)support with a 3D porous structure.The CrMnFeCoNi nanoparticles are embraced by several graphene layers,forming graphene shell-encapsulated HEA nanoparticles.The mechanisms of the laser solid-phase synthesis of HEA NPs on LIG supports are investigated through theoretical simulation and experimental observations,in consideration of mixed metal precursor adsorption,thermal decomposition,reduction through electrons from laser-induced thermionic emission,and liquid beads splitting.The production rate reaches up to 30 g/h under the current laser setup.The laser-synthesized graphene shell-encapsulated CrMnFeCoNi NPs loaded on LIG-coated carbon paper are used directly as 3D binder-free integrated electrodes and exhibited excellent electrocatalytic activity towards oxygen evolution reaction with an overpotential of 293 mV at the current density of 10 mA/cm2 and exceptional stability over 428 h in alkaline media,outperforming the commercial RuO2 catalyst and the relevant catalysts reported by other methods.This work also demonstrates the versatility of this technique through the successful synthesis of CrMnFeCoNi oxide,sulfide,and phosphide nanoparticles.
关 键 词:structure SYNTHESIS ENTROPY
分 类 号:TG14[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7