检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄阳坤 陈昌凤[1] HUANG Yangkun;CHEN Changfeng(School of Journalism and Communication,Tsinghua University,Beijing 100084,China)
出 处:《西安交通大学学报(社会科学版)》2024年第6期130-139,共10页Journal of Xi'an Jiaotong University:Social Sciences
基 金:国家社会科学基金重大项目(18ZDA307)。
摘 要:人像在政治传播活动中具有特别意义,以人像为中心的视觉政治实践近年来面临传播媒介的社会化、平台化与智能化挑战。研究以海外社交媒体平台Twitter的涉中国议题为切入点,结合社交机器人识别技术和计算机视觉技术,观察以社交机器人为代表的算法代理如何影响当今人像政治的社交媒体实践。结果发现,Twitter社交机器人通过操纵性别、视觉年龄等人口特征,五官、表情等容貌特征,以及大小、位置、拍摄角度等画面特征的可见性,自动化地参与涉中国视觉议题的内容生产,并与人类用户的视觉传播活动形成显著差异。机器用户在顺应社交媒体平台社会化传播逻辑、力求引导社交流量的同时,又从根本上服务于政治逻辑,在涉中国议题上借助视觉手段塑造、加固海外社交媒体平台用户的刻板印象与政治偏见。技术逻辑、平台逻辑与政治逻辑相互交织并作用于当今人像政治实践,改塑了视觉政治生态以及个体认知与情感体验。Visual materials have long played a pivotal role in shaping political narratives across different eras.Among the various forms of visual political content,portraits-or more broadly,human faces-hold a unique and significant position.As a core element of visual politics,the use of portraits is evolving in response to new technological contexts.The production and consumption of visual portraits are increasingly influenced by automation technologies,exemplified by the growing involvement of automated social media bots in the dissemination of portraits on various platforms.These changing dynamics necessitate a closer observation of the automation logic that now drives portrait politics and its impact on social media practices.To address this emerging landscape,this study focuses on Twitter(now renamed“X”)to investigate the dissemination of portrait images by social media bot accounts from an algorithmic agent perspective.Using custom Python crawler scripts,the study collected 106,562 China-related images from September to November 2021.Social bot detection was then applied,revealing that 56,433 of these images-roughly 52.96%-were posted by bot accounts,while the remaining 50,129 images came from human users.To analyze the portrayal of human faces in these images,the study employed a computer vision tool to detect recognizable faces.Results indicated that 37,477 images(approximately 35.17%of the total)contained identifiable human faces,with 18,715 of these images originating from bot accounts.Leveraging the output of the computer vision analysis,the study further examined various facial attributes,including face size,position,gender,estimated age,facial expression,emotion,skin condition,blurriness,attractiveness,facial features,posture(such as open/closed eyes or mouth),and camera angles.The findings reveal that Twitter bots engage actively in the visual production of China-related content by selectively emphasizing certain demographic traits-such as gender and perceived age-as well as visual and facial features li
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.7.241