检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁嘉韵 温喜廉 杨智诚 陈广浩 杨永民 LIANG Jiayun;WEN Xilian;YANG Zhicheng;CHEN Guanghao;YANG Yongmin(Guangzhou Pearl River Construction Development Co.,Ltd.,Guangzhou Guangdong 510075;School of Civil Engineering,Guangzhou University,Guangzhou Guangdong 510006;College of Urban and Rural Construction,Zhongkai University of Agriculture and Engineering,Guangzhou Guangdong 510225;Guangdong Lingnan Township Green Building Industrialization Engineering Technology Research Center,Guangzhou Guangdong 510225)
机构地区:[1]广州珠江建设发展有限公司,广东广州510075 [2]广州大学土木工程学院,广东广州510006 [3]仲恺农业工程学院城乡建设学院,广东广州510225 [4]广东省岭南乡镇绿色建筑工业化工程技术研究中心,广东广州510225
出 处:《湖北理工学院学报》2024年第6期47-54,共8页Journal of Hubei Polytechnic University
基 金:广东省住房和城乡建设厅科技创新计划项目(项目编号:2023-K1-463769);广州市科技计划项目(项目编号:2023A04J0647)。
摘 要:针对建筑工地工作区的智能识别问题,提出一种基于CBAM-DeepLabv3+和迁移学习的工地工作区智能识别方法,以DeepLabv3+为基础框架,引入CBAM模块和迁移学习策略提升模型的特征提取能力和训练效果,同时采用较小的主干网络提升模型的计算速度。结果表明,该方法能够有效识别施工现场各个工作区,平均识别正确率为86.2%,IoU和F1-Score指标分别为0.85和0.86。与非迁移学习方法相比,该智能识别方法的识别效果显著提升,同时也证实了迁移学习方法能够克服样本量不足的问题。For intelligent identification of construction site workspace,an intelligent recognition method for construction site work areas based on CBAM-DeepLabv3+and transfer learning was proposed.With the DeepLabv3+framework,the model′s feature extraction capabilities and training effectiveness were enhanced by introducing CBAM modules and transfer learning strategies,and the model computational speed was improved by employing a smaller backbone network.The results demonstrate that the proposed method effectively identifies various work areas on construction sites with an average recognition accuracy of 86.2%,and critical parameters of IoU of 0.85 and of F1-Score of 0.86,respectively.Compared to non-transfer learning methods,the proposed approach exhibits significant improvements in recognition performance,which also confirms the ability of transfer learning to overcome challenges posed by limited sample sizes.
关 键 词:施工现场工作区 智能识别 CBAM-DeepLabv3+ 迁移学习
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62