Blow-Up of Solution and Energy Decay for a Quasilinear Parabolic Problem  

在线阅读下载全文

作  者:LI Fang ZHANG Jingjing 

机构地区:[1]School of Mathematics,Jilin University,Changchun 130012,China

出  处:《Journal of Partial Differential Equations》2024年第3期263-277,共15页偏微分方程(英文版)

摘  要:In this paper,we obtain the blow-up result of solutions and some general decay rates for a quasilinear parabolic equation with viscoelastic terms A(t)|u_(t)|^(m-2)u_(t)-△u+∫_(0)^(t)g(t-s)△u(t-s)△(x,s)ds=|u|^(p-2)ulog|u|.Due to the presence of the log source term,it is not possible to use the source term to dominate the term A(t)|u_(t)|^(m-2)u_(t).To bypass this difficulty,we build up inverse Holder-like inequality and then apply differential inequality argument to prove the solution blows up in finite time.in addition,we can also give a decay rate under a general assumption on the relaxation functions satisfying g′≤-ζ(t)H(g(t),H(t))=t^(v),t≥0,v>1.This improves the existing results.

关 键 词:Viscoelastic term blow up decay estimate 

分 类 号:O145.8[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象