检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Aichi Chien Ayush Lall Maitraya Patel Lucas Cusumano Justin McWilliams
机构地区:[1]Department of Radiology,David Geffen School of Medicine at UCLA,Los Angeles,CA 90095,USA [2]Division of Ultrasonography,David Geffen School of Medicine at UCLA,Los Angeles,CA 90095,USA
出 处:《EngMedicine》2024年第1期3-10,共8页医工交叉(英文)
基 金:supported in part by NIH Grant R01HL152270;a UCLA Radiology Exploratory Research Grant Award.
摘 要:Kidney failure is particularly common in the United States,where it affects over 700,000 individuals.It is typically treated through repeated sessions of hemodialysis to filter and clean the blood.Hemodialysis requires vascular access,in about 70%of cases through an arteriovenous fistula(AVF)surgically created by connecting an artery and vein.AVF take 6 weeks or more to mature.Mature fistulae often require intervention,most often percutaneous transluminal angioplasty(PTA),also known as fistulaplasty,to maintain the patency of the fistula.PTA is also the first-line intervention to restore blood flow and prolong the use of an AVF,and many patients undergo the procedure multiple times.Although PTA is important for AVF maturation and maintenance,research into predictive models of AVF function following PTA has been limited.Therefore,in this paper we hypothesize that based on patient-specific information collected during PTA,a predictive model can be created to help improve treatment planning.We test a set of rich,multimodal data from 28 patients that includes medical history,AVF blood flow,and interventional angiographic imaging(specifically excluding any post-PTA measurements)and build deep hybrid neural networks.A hybrid model combining a 3D convolutional neural network with a multilayer perceptron to classify AVF was established.We found using this model that we were able to identify the association between different factors and evaluate whether the PTA procedure can maintain primary patency for more than 3 months.The testing accuracy achieved was 0.75 with a weighted F1-score of 0.75,and AUROC of 0.75.These results indicate that evaluating multimodal clinical data using artificial neural networks can predict the outcome of PTA.These initial findings suggest that the hybrid model combining clinical data,imaging and hemodynamic analysis can be useful to treatment planning for hemodialysis.Further study based on a large cohort is needed to refine the accuracy and model efficiency.
关 键 词:ANGIOPLASTY Clinical predictive models Deep learning FISTULA HEMODIALYSIS Medical informatics
分 类 号:R54[医药卫生—心血管疾病]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7