检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:肖志峰 XIAO Zhifeng(Tongyu County Power Supply Company of State Grid Jilin Electric Power Co.,Ltd.,Baicheng,Jilin Province,137200 China)
机构地区:[1]国网吉林省电力有限公司通榆县供电公司,吉林白城137200
出 处:《科技资讯》2024年第22期119-121,共3页Science & Technology Information
摘 要:传统电力系统的接地故障检测和自我修复手段往往因反应迟缓和精度不高而受到挑战。首先,构建了一个单相接地故障识别框架,核心在于聚焦零序电流这一关键指标,对零序电流信号进行了多维度的处理,将其转化为时域、频域和小波域的特性向量,并借助随机森林算法赋予这些特征不同的权重。其次,利用轻量级梯度提升机(Light Gradient Boosting Machine,GBM)算法对这些经过分类的特征向量进行深度学习训练,从而实现精确的故障预测。该算法能有效抵御过渡电阻和初始相位角变化对预测结果的影响,准确性表现达到98.9%,远超其他比较算法。The traditional grounding fault detection and self repair methods in power systems are often challenged due to slow response and low accuracy.Firstly,this paper constructs a framework for identifying one-phase ground⁃ing faults,with a focus on the key indicator of zero sequence current,which processes the zero sequence current sig⁃nal in multiple dimensions,converts it into characteristic vectors in the time domain,frequency domain,and wave⁃let domain,and assigns different weights to these features using Random Forest Algorithm.Then,the LightGBM al⁃gorithm is used to perform deep learning training on these classified feature vectors,in order to achieve accurate fault prediction.This algorithm can effectively resist the influence of transition resistance and initial phase angle changes on the prediction results,with an accuracy performance of 98.9%,far exceeding other comparative algo⁃rithms.
分 类 号:TM76[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.163.13