High accuracy deep learning wavefront sensing under highorder turbulence  

在线阅读下载全文

作  者:Dongming Liu Hui Liu Zhenyu Jin 

机构地区:[1]Yunnan Observatories,Chinese Academy of Sciences,Kunming 650216,China [2]University of Chinese Academy of Sciences,Beijing 100049,China

出  处:《Astronomical Techniques and Instruments》2024年第6期316-324,共9页天文技术与仪器(英文)

基  金:supported by the National Natural Science Foundation of China(NSFC)(U2031140).

摘  要:We explore an end-to-end wavefront sensing approach based on deep learning,which aims to deal with the high-order turbulence and the discontinuous aberration caused by optical system obstructions commonly encountered in real-world ground-based telescope observations.We have considered factors such as the entrance pupil wavefront containing high-order turbulence and discontinuous aberrations due to obstruction by the secondary mirror and spider,realistically simulating the observation conditions of ground-based telescopes.By comparing with the Marechal criterion(0.075λ),we validate the effectiveness of the proposed approach.Experimental results show that the deep learning wavefront sensing approach can correct the distorted wavefront affect by high-order turbulence to close to the diffraction limit.We also analyze the limitations of this approach,using the direct zonal phase output method,where the residual wavefront stems from the fitting error.Furthermore,we have explored the wavefront reconstruction accuracy of different noise intensities and the central obstruction ratios.Within a noise intensity range of 1%–1.9%,the root mean square error(RMSE)of the residual wavefront is less than Marechal criterion.In the range of central obstruction ratios from 0.0 to 0.3 commonly used in ground-based telescopes,the RMSE of the residual wavefront is greater than 0.039λand less than 0.041λ.This research provides an efficient and valid wavefront sensing approach for high-resolution observation with ground-based telescopes.

关 键 词:Wavefront sensing High-order turbulence High-resolution observation Deep learning 

分 类 号:P111[天文地球—天文学] P111.44

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象