检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:MOUTAOUAKIL Wassima HAMIDA Soufiane SALEH Shawki LAMRANI Driss MAHJOUBI Mohamed Amine CHERRADI Bouchaib RAIHANI Abdelhadi
机构地区:[1]EEIS Laboratory,ENSET of Mohammedia,Hassan Ⅱ University of Casablanca,Mohammedia,Morocco [2]IACS Laboratory,ENSET of Mohammedia,Hassan Ⅱ University of Casablanca,Mohammedia,Morocco [3]GENIUS Laboratory,SupMTI of Rabat,Rabat,Morocco [4]STIE Team,CRMEF Casablanca-Settat,Provincial Section of El Jadida,El Jadida,Morocco
出 处:《Journal of Geographical Sciences》2024年第12期2477-2508,共32页地理学报(英文版)
摘 要:Mapping floods is crucial for effective disaster management. This study focuses on flood assessment in northern Morocco, specifically Tangier, Tetouan, and Larache. Due to the lack of a comprehensive flood inventory map, we used unsupervised learning techniques, such as K-means clustering and fuzzy logic algorithms, to predict flood-prone areas. We identified nine conditioning factors influencing flood risk: elevation, slope, aspect, plan curvature, profile curvature, land use, soil type, normalized difference vegetation index(NDVI), and topographic position index(TPI). Using Landsat-8 imagery and a Digital Elevation Model(DEM) within a Geographic Information System(GIS), we analyzed topographic and geo-environmental variables. K-means clustering achieved silhouette scores of 0.66 in Tangier and 0.70 in Tetouan, while the fuzzy logic method in Larache produced a Davies-Bouldin Index(DBI) score of 0.35. The maps classified flood risk levels into low, moderate, and high categories. This research demonstrates the integration of machine learning and remote sensing for predicting flood-prone areas without existing flood inventory maps. Our findings highlight the main factors contributing to flash floods and assess their impact, enhancing the understanding of flood dynamics and improving flood management strategies in vulnerable regions.
关 键 词:remote sensing conditioning factors GIS flood susceptibility machine learning DEM
分 类 号:P208[天文地球—地图制图学与地理信息工程] TV877[天文地球—测绘科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49