The segmentation of debris-flow fans based on local features and spatial attention mechanism  

在线阅读下载全文

作  者:SONG Xin WANG Baoyun 

机构地区:[1]School of Mathematics,Yunnan Normal University,Kunming 650500,China [2]Key Laboratory of Modern Analytical Mathematics and Applications,Yunnan Normal University,Kunming 650500,China

出  处:《Journal of Geographical Sciences》2024年第12期2534-2550,共17页地理学报(英文版)

基  金:National Natural Science Foundation of China,No.61966040.

摘  要:In response to issues such as incomplete segmentation and the presence of breakpoints encountered in extracting debris-flow fans using semantic segmentation models,this paper proposes a local feature and spatial attention mechanism to achieve precise segmentation of debris-flow fans.Firstly,leveraging the spatial inhibition mechanism from neuroscience theory as a foundation,an energy function for the local feature and spatial attention mechanism is formulated.Subsequently,by employing optimization theory,a closed-form solution for the energy function is derived,which ensures the lightweight nature of the proposed attention mechanism algorithm.Finally,the performance of this algorithm is compared with other mainstream attention mechanism algorithms embedded in semantic segmentation models through comparative experiments.Experimental results demonstrate that the proposed method outperforms both the original models and mainstream attention mechanisms across various classic models,effectively enhancing the performance of network models in debris-flow fan segmentation tasks.

关 键 词:loess geological hazards semantic segmentation convolutional neural network debris-flow fans attention mechanism 

分 类 号:P642.23[天文地球—工程地质学] TP391.41[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象