检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《建筑节能(中英文)》2024年第12期52-52,56,共2页Building Energy Efficiency
摘 要:[OA](1)Centralised vs.decentralised federated load forecasting in smart buildings:Who holds the key to adversarial attack robustness?by Habib UllahManzoor,Sajjad Hussain,David Flynn,et al,Article 114871 Abstract:The integration of AI and ML into energy forecasting is crucial for modern energy management.Federated Learning(FL)is particularly noteworthy because it enhances data privacy and facilitates collaboration among distributed energy resources.It enables model training across multiple locations while minimizing reliance on centralized servers and data transfers.However,FL faces significant security challenges,particularly from adversarial attacks that can undermine the models’integrity and reliability.This paper addresses these security concerns by evaluating the effectiveness of Centralized Federated Learning(CFL)and Decentralized Federated Learning(DFL)in distributed load forecasting.
关 键 词:forecasting holds LOAD
分 类 号:TU201.5[建筑科学—建筑设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33