基于MIC-iAFF-Stacking集成学习的航空器滑出时间预测  被引量:1

Aircraft departure taxi time prediction based on MIC-iAFF-Stacking ensemble learning

在线阅读下载全文

作  者:李浩 卢朝阳[1] 谈翌平 苟利鹏 张慧子 LI Hao;LU Chaoyang;TAN Yiping;GOU Lipeng;ZHANG Huizi(College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)

机构地区:[1]南京航空航天大学,民航学院,南京211106

出  处:《交通运输工程与信息学报》2024年第4期142-153,共12页Journal of Transportation Engineering and Information

基  金:国家自然科学基金民航联合基金重点项目(U2033203)。

摘  要:针对当前单一模型预测航空器滑出时间精度提升存在瓶颈的问题,提出一种结合最大互信息系数(Maximal Information Coefficient,MIC)的迭代注意力特征融合模块(iterative Attentional Feature Fusion,iAFF)和Stacking集成学习框架组合的航空器滑出时间预测模型。首先利用MIC提取出与滑出时间相关性较高的因素作为模型原始特征序列;然后以支持向量回归(SVR)、随机森林(RF)、多层感知机(MLP)和极限梯度提升机(XGBoost)为基学习器模型对原始特征进行特征构造,并利用iAFF模块对基学习器得到的构造特征和原始特征进行特征融合,通过MLP对融合后的特征进行学习,最终得到预测滑出时间。经实际算例对比验证表明,与单一模型相比,MIC-iAFF-Stacking集成学习模型在±2、±3、±5 min误差范围内的预测精度分别提升了6.14%、6.40%、2.31%,证明了该模型在滑出时间预测中的有效性。An aircraft departure taxi time prediction model,which combines maximal information coefficient(MIC),iterative attentional feature fusion(iAFF),and Stacking ensemble learning framework,was developed to improve the prediction accuracy of a single model for aircraft taxi-out time.First,MIC was used to extract the factors that highly correlate with taxi-out time to serve as the original feature sequence of the model.Subsequently,support vector regression(SVR),random forest(RF),multilayer perceptron(MLP),and extreme gradient boosting machine(XGBoost)were used as the components of the base learner model to construct the original features.The iAFF module was used to fuse the original and structural features obtained by the base learner model,and the fused features were learned using the MLP to finally predict the taxi-out time.The comparison and verification of actual examples show that the prediction accuracy of MIC-iAFF-Stacking ensemble learning model was higher than that of a single model by 6.14%,6.40% and 2.31% in the error range of ±2,±3,and ±5 min,respectively,which proves the effectiveness of the model in predicting the taxi-out time.

关 键 词:航空运输 离港滑行时间 最大互信息系数 注意力特征融合 Stacking集成学习 

分 类 号:V355.2[航空宇航科学与技术—人机与环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象