Ionic Power Generation on a Scalable Cellulose@polypyrrole Membrane:The Role of Water and Thermal Gradients  被引量:1

在线阅读下载全文

作  者:Chenyu Liu Jixiang Gui Danhong Li Zhongxin Liu Yijun Shen Wei Huang Huihui Wang Xinlong Tian 

机构地区:[1]School of Marine Science and Engineering,School of Chemistry and Chemical Engineering,Hainan University,Haikou 570228,People’s Republic of China [2]School of Engineering Science,University of Science and Technology of China,Hefei 230026,Anhui,People’s Republic of China

出  处:《Advanced Fiber Materials》2024年第1期243-251,共9页先进纤维材料(英文)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.52162012,52262014,22308074,22368019);Key Research and Development Project of Hainan Province(Grant Nos.ZDYF2022SHFZ053);Science and Technology Innovation Talent Platform Fund for South China Sea New Star of Hainan Province(Grant No.NHXXRCXM202305);Open Research Project of State Key Laboratory of Marine Resource Utilization in South China Sea(Grant No.MRUKF2023020).

摘  要:The integration of ionic power generation with solar-driven water evaporation presents a promising solution to the critical global problems of freshwater scarcity and clean energy deficiency.In this work,a scalable normal temperature chemical vapor deposition(CVD)method is applied for the first time to the fabrication of a cellulose@polypyrrole(CC@PPy)membrane with efficient ionic power generation performance.The excellent ionic power generation is intimately related to the water and thermal gradients across the membrane,which not only induces fast water evaporation but also synergistically promotes the transport of counterions in charged nanochannels,and the corresponding mechanism is attributed to the streaming potential resulting from the ionic electrokinetic effect and the ionic thermoelectric potential originating from the Soret effect.Under one sun illumination,the CC@PPy film can produce a sustained voltage output of~0.7 V and a water evaporation rate up to 1.67 kg m^(−2)h^(−1)when an adequate water supply is available.This study provides new methods for the scalable fabrication of ionic power generation membranes and a design strategy for high-performance solar power generators.

关 键 词:Ionic power generation Water gradient Thermal gradient Electrokinetic effect Soret effect 

分 类 号:O441[理学—电磁学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象